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ABSTRACT

The success of the bag-of-words approach for text has edfiire recent use of analogous strategies for global represe
tation of images with local visual features. Many appliocat have been proposed for object detection, image anoiotati
queries-by-example, relevance feedback, automatic ationf and clustering. In this paper, we investigate thaitslof

the bag-of-words analogy for image representation andgrspecifically, local pattern selection for feature genienat
We propose a generalized document representation frarkemdrapply it to the evaluation of two pattern selectiontetra
gies for images: dense sampling and point-of-interestotiete We present empirical results that support our cdigan
that text-based experimentation can provide useful inisigito the effectiveness of image representations baseteon
bag-of-visual-words technique.

Keywords: bag-of-words, visual vocabulary, image representatiesiar space model, TF-IDF, image retrieval, Reuters
RCV1, ImagEVAL

1. INTRODUCTION

Datasets such as the ones managed by professional news$esgénily and holiday photo albums, and, more generally,
images accessible via the Internet, all appear to have alimfoste variations in scenes, objects, and technical shgo
conditions. Even in the most favorable situations, the matic annotation of images is a very challenging task; heawnev
for general image collections, it must be admitted that thtesof-the-art image annotation techniques are stitléupate.
Much progress has been made in recent years, but the probl&titi far from being solved.

We are interested here in generic frameworks for deterrgiaiglobal set of visual features for image data sets. Much
as in the case of text keywords for documents, a collectioniefal features would ideally serve as a form of visual
vocabulary that would provide a common basis for deschipéiod comparison of images. These ‘visual keywords’ would
need to relate to the visual content of individual images yet be sufficiently general so as to allow the discovery of
similar content across subcollections of images. The fiegt &1 the development of a visual vocabulary is thus to pcedu
candidate visual keywords by means of analysis of the imagdghe extraction of low-level visual features.

One can distinguish two main families of visual featuresolfal features are computed over the full image, and are
usually well suited for describing the nature of the imagecfsas whether it is a photograph, a drawing, or an artistic
representation, etc.) and the context of the image (for @@mvhether it is indoor or outdoor, day or night, natural or
urban, etc) Local features are computed only on a portion of the imagaa(lis quite small), and are generally used
for object detection. Often, a region-of-interest detecaised to determine the portions of the images from whichllo
features will be extracted. Segmentafi@md point-of-interest detectiért are the two main strategies used for this purpose.
With global features, the image representation is genesaifhightforward. However, even when local features areeto
used, applications such as learning algorithms may sorestimquire a global image representation that encompasses
all the local visual information. The bag-of-visual-worgpresentation, very much inspired by the classical bagantls
representation for text, is one of the most popular repitasem for images. A visual vocabulary composed of visualdgo
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is generated. An image is then represented by a coordinateryeach value of which expresses the degree of importance
of a pattern with respect to the image and/or the databasevhsla.

One standard method for generating a visual vocabulannbewgith the detection of points of interest within images of
a training set, and the characterization of these pointsrdaom to low-level visual features. Quantization of thente of
interest is then performed by means of a clustering, witlh&haster giving rise to a visual word. Each training set imag
is then associated with a histogram of the visual word fregies. These image representations are used to train #ielass
that will produce models for all the potential concepts wehwio detect. Using the vocabulary and models obtained, one
is then able to predict concepts on new images.

In this paper, we will investigate the effectiveness of aistbcabularies produced by using point-of-interest daiac
for local feature generation. The design choices made icrb&tion and use of such visual vocabularies will be asdesse
according to the performance of analogous design choicetefb data. Another motivating factor for assessing the
performance relative to text is that in practice, groundhtinformation is generally easier and cheaper to obtairteir
data than it is for images.

Applying the bag-of-word strategy is inherently easiertéoxt than for images. For text databases, the word bourslarie
are well defined, the vocabulary is known in advance, andnsgeacross all documents. Unlike the situation with insage
with text one is certain that meaningful information is dedrby the words of the vocabulary — indeed, the words of any
language can be regarded as having been created preciselmey such information. If the entire vocabulary is uskd, t
document can be viewed as being fully covered by the set af features (the keywords).

For images on the other hand, the use of points of interestitotes a considerable restriction on the visual content
covered by the visual vocabulary. The rationale behind Ithigation to small point sets is the high computationaltcos
inherent in the generation of local descriptors that fulbver all images. Analyzing and characterizing the data @& th
vicinity of all pixels, over all potential scales, is too exsive on current hardware; when geometrical relatiorsship
sought, the cost is driven even higher. Standard computeuse today are generally unable to process the full volume
of information present in images, although research intdadte algorithms or the development of faster hardware may
someday lead to a reduction in computational cost.

In their desire to reduce image processing costs, the canpigion community has put much effort into the de-
velopment of point-of-interest detectors, beginning witikir original applications for image registration. Detes are
generally attracted to specific areas of images that haveuaigation in the visual signal, such as the vicinity of eslgad
corners of regions. One of the most important consideratinrpoint-of-interest detection is its repeatability, battthe
locations of the points of interest selected from differiemages of a common object photographed in different comti
will be in alignment. When trying to limit the amount of infoation processed in the automatic annotation of images, the
detection of points of interest is an attractive option tatlows the selection of a very small proportion of imageslhans
having the highest visual variance.

High visual variance is often considered to be associatétul lvigh semantic content. However, this assumption is not
always justified, as low variance may also carry importantaatic information in generic image datasets. We therefore
believe that all areas of an image must be eligible to geaavatds of the visual vocabulary, regardless of whether they
exhibit high variation or low variation. It is known that cextual information has a positive effect when performitjeat
detection®®

This paper is organized as follows. We first introduce a galimrd bag-of-words representation framework that can
be applied to both image data and text data. In order to asisestkely performance of a given representation strategy
for images, we construct an analogy between the image rmEOn and a representation of a degraded text dataset
within which many of the characteristics of image sets haenbreproduced. We are not seeking a formal validation of
the studied approaches on images, but a better understamidime mechanisms involved. If after establishing thatdea
performance for the degraded text representation is imttigreasier than for the image representation, good pedoaa
of search for standard text representations and poor peaiace on the degraded text dataset would together indicate t
the bag-of-words strategy for images cannot be expecteérform well. On the other hand, good performance on the
degraded text dataset would indicate that the particulgsdfavords strategy has the potential to perform well foages.

In this paper, we will provide experimental results with bsitive and negative examples that justify the assedsofien
bag-of-words image representations by means of an anatogyt.



2. GENERALIZED DOCUMENT REPRESENTATION FRAMEWORK

The generalized framework proposed in this section is aesigso as to facilitate the analogy between bag-of-words
representations for different document types. In paréiguhe framework will be instantiated for text and imageesadn

this section, we will use the terms ‘document’, ‘vocabulaiword’ and ‘pattern’ in a generic sense, applicable totbot
images and text.

2.1 TF-IDF weighting

We start with a collectio” containingm documents, and assume that each docurbgnis composed of; patterns. A
vocabularyV is an ensemble of words selected from among the union of all patterns takenaivdocuments.

C = {Dy,k € [1,m]} (1)
Dy = {Pf,j€[1,s]} 2)
V={W,,ie€[l,n]} 3)

In vector space modelingeach document of the database is associated with a veatbrceardinate of which repre-
sents a word of the vocabulary. In a boolean model, each owielof the vector is zero (when the corresponding word
is absent) or one (when the corresponding word is presengnyMefinements of the boolean model exist. The most
commonly used are term weighting models that may take intowatt the frequency of appearance of a word, its locations
within the document, or the proportion of documents thataionthe word. On of the most popular weightings, TF-IDF,
depends on the frequency of the word within the documenttlaadarity of the word within the document set.

In our framework, we use a slightly modified variant of TF-IB€ighting. As with standard TF-IDF, for a given word
W;, we define the document frequenioy as the proportion of documents ©fin which W; appears.

_ |{Dx,k € [1,m],3j € [1,s] [Wi = PF}|

m

DF(W;)

(4)

The inverse document frequency is defined as

Idf(W;) = log < (5)

1
Df(Wi)>
For a given documenb,,, we define the term frequendyf of a wordW; as the proportion of patterns @f; being equal
to W;.

{P}“,j €1, s |W; = Pf}|

Sk

TEW, Di) = | (6)

We can then define the TF-IDF weighting of wdid, for documentDy, to be
THIdf (W;, Dy) = TE(W;, D) x Idf (W) (7)

Finally, each document can be represented by a vector ofrgiimen containing the TF-IDF measures of all the words of
the vocabulary with respect to the document. In this simgleaval system, each query is also modeled by a vector in the
same manner as the documents.

2.2 Document similarity

Although global document representations have a variegpplications, for most of them some measure of similarity
between documents is needed. Similarity between docuneetdns, or between a query vector and a document vector, is
very often measured according to the angle formed by the ®atovs, or by its cosine value. The classical vector angle
distance measure between two documénisand D, is defined as:

g aib;
d(D,, Dy) = arccos < ;1:12&' — 2) (8)
Dim1 @i Dimy b

An angle approaching zero, or a cosine value approachingiogieates that the pair of documents share many important
words in common.




2.3 Evaluation of representations

The quality of our representations and their associatedtwaaries will be evaluated according to tipgery-by-example
paradigm, in which the performance of similarity queriesdrhat documents of the data set is measured. For each query
document, a set of relevant documents is provided as a groutidfor the retrieval task, with the average precision JAP

as the evaluation measure. The precision of a query is dedisied

__number of relevant documents retrieved
o number of documents retrieved

(9)

The average precision is the average, over all relevantrdeats, of the precision values obtained for the minimune-siz
query result containing that document. For a qu@rywith r the rank,N the number retrievedel() a binary function on
the relevance of a given rank, ait{) precision at a given cut-off rank, we have :

_ L(P(r) x rel(r))
APq = number of relevant documents (10)

The MAP is the mean of the AP taken over a set of queries. Asuh@er of documents retrieved affects the value of the
AP, we standardize the result by setting the query resudttsibe twice that of the relevant set.

Other than the identification of query relevant sets, in ogregimental settings we avoid the reliance on ground truth
information such as would be provided by a classificatiorhefdata. This to stay as close as possible to the represantati
evaluation, and to avoid the stacking of too many technicahmonents. For this reason, we do not permit learning
strategies for the selection of visual features, or the dsang semantic information in the creation of vocabularies.
Vocabularies are suggested by the local context of the dentiand are not specific to the concepts covered by the data
set.

2.4 Degradation of text

The text domain has a much simpler structure than the imageitho text data can be regarded as a 1-dimensional stream
of symbols, whereas image data is more naturally viewed aslim@nsional array. In the text domain, we need not
be concerned with variances in scale, angle of view, defbiliiaof objects, lighting conditions, and other propesi
characteristic of images. ldentification of objects is denpand although polysemy also causes difficulties in thé te
domain, the semantic meaning of a text word is easier to didgban that of an image pattern. Thus, one would clearly
expect that a given representation strategy for imagesavoeitform even better if analogously applied to text. Howeve
the differences between text and image data are so grea thathod that works poorly for images may nevertheless
work well for text. For comparisons of text and image repnéagons to be of any benefit, the advantages of text relative
to images must first be neutralized.

In text, the words are very well distinguished by the spacebs @her punctuation symbols. On the other hand, the
identification of objects and patterns present in images diffecult, unresolved issue in computer vision for generic
databases, In order to partially eliminate this advantagjée hy text over images, we remove all spaces and punctuation
marks from all documents of text datasets, leaving a symdtat@nsisting of 36 characters (26 letters and 10 digitsjhWi
the natural vocabulary no longer available, bag-of-womsraaches for degraded text datasets must build up a vaogbul
from patterns within the data, in a manner analogous to ttieniques for building visual vocabularies. The most basic
patterns in degraded text would simply be sequences of cfesisa without any specific semantic meaning — analogous
to, but still much simpler than, patterns associated withdeiv regions or the vicinities of points of interest in image

3. DATASETS
3.1 The Reutersdataset

The RCV1 Reuters corpus is composed of 806,791 Englishikzgegnews articles collected over a one-year period, from
20 August 1996 to 19 August 1997The original vocabulary has 435,282 words. To avoid potébiasing of the retrieval
results, we make use of only main bodies of the articles. itles tcategories, and other information are omitted (edas
metadata). We first convert all alphabetic characters tet@mase, and all punctuation characters to spaces. We thete de
any character that is neither alphanumeric nor a space. WWeue stop words and perform stemming using the Porter
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Figure 1. Word size distribution for the vocabuldry;.

algorithm® We keep numbers and 1-letter words (provided that they arestop-words). This results in a vocabulary
of 365,652 words. If we filter this vocabulary so as to retaifyovords present in at least 50 documents, 34,026 words
remain. This vocabulary, which we will refer to &g, will be treated as a baseline for the experiments. For mé&tion,

we show in Figure 1 the word size distribution for the vocaloylV .

For the experiments, we considered 7 query terms of vangngths, selected so as to focus on a specific context or
event in categories representative of the full dataseteidéwof the terms were also chosen for their polysemousprger
tations, so that contextual information would be requiredthe correct retrieval of ground truth documents. Two @& th
queries were composed of two keywords. One of them, the qgmidman + simpsonfocuses on a specific news event,
the well-reported O.J. Simpson trial of 1995. Both of theweyds, if taken individually, have several meanings assgedi
with them. Their polysemous nature can be seen from the lopgtion of documents containing both keywords — only
4% — relative to the set of documents containing at least btieedwo keywordsGoldmanis part of the name of Goldman
Sachs, a famous investment bank that often appears in thg Reuters news articles on financial matte8mpsornis
the name of a desert in Australia, as well as the name of a Reotarnalist. The total number of documents containing
the query keywords is given in Table 1. The experimentaluatidn used these document subsets as the ground truth sets
for the 7 queries. For each ground truth set, we perform aygbgrexample based at each document, and compute the
average precision (AP). With this treatment, the AP valuasnees the overall ability of the relevant documents toaetr
the remaining members of their set.

Table 1. Number of Reuters documents containing query keywortés @émming).

Stemmed query #Docs
nuclear 7654
goldman 6543
wto 2351
simpson 1888
greenpeac 713
arbil 587
goldman + simpson 337
zidan 194
greenpeac + nuclear 140
coulthard 125
kasparov 89

The MAP scores (average of the AP for each set) obtained wsicapularyl’s will serve as a baseline for comparison
among other choices of vocabulary. All further results fagieen query will be reported as a ratio of the score obtained
for the same query usinz. We also extracted two subsets 6§ for further comparisons. The first subséi,, is a
vocabulary consisting of the 1296 words B achieving the highest document frequency values. Noneefjtrery
keywords is present in this small vocabulary. The secondeiyly, is the vocabulary of all words dfs composed of



exactly 5 characters, with the exception of the query keylwarbil andzidan V, contains 5274 words. The results are
reported in Table 2.

Table 2. MAP scores for text queries with respect to three vocabulaFies scores foi’; and V. are expressed as proportions of the
score for forVz.

Stemmed query Vi Vi Vs
goldman + simpson  0.2389 0.3110 0.3958
coulthard 0.2045 0.1284 0.5003
arbil 0.2014 0.2521 0.6577
kasparov 0.1234 0.1967 1.0969
wto 0.0897 0.2102 0.1008
zidan 0.0851 0.1131 0.2306

greenpeac + nuclear 0.0539 0.4500 0.1790
Average of 7 queries 0.1492 0.1744 0.4286

As theV; vocabulary contains only common words that are not keywofdmy query, one can interpret the MAPs
obtained as a good indication of the amount of contextuakimétion contributing to the overall results.

3.2 ThelmagEVAL dataset

The fourth task of the ImagEVALbenchmark was dedicated to object detection. Ten classelsj@éts were proposed

— armored vehiclecar, cow, Eiffel tower, minaret and mosquelang road signs sunglassestree andUS flag The

test database contains 14,000 pictures, both color andsgiag (see Figure 2 for some examples). Some images contain
objects from multiple classes, and 5000 contain no objechfany class. The objects appear in a great variety of poses,
contexts and sizes. The training database is composed nflbmubox crops of class objects. None of the training images
were extracted from the final database. The ImagEVAL datihasne of the most challenging image databases available.

Figure 2. Examples of ImagEVAL images containing a US flag.

Table 3 shows the number of training images provided for thagEVAL benchmark and the number of matching
images in the full dataset. Of the training examples forrted signsclass, only those which were true photographs of
signs were used — all schematic diagrams were omitted.

For evaluations on the ImagEVAL dataset, a query was peddrbased on each training image, and the MAP was
computed on the full dataset for the object class to whichgtiezy belonged.

Thttp://www.imageval.org



The number of relevant images is not the same for each of tlbje@t categories. We compute the MAP obtained by a
random ranking of the dataset images (averaged over 10. Mfesfreat these results as a baseline for this dataset. gl ot
scores are expressed as a proportion of the random basetires with values approachirig0 indicating randomness.

The results we obtain (shown in Table 8) should not to be coatpwith previously published results for the Im-
agEVAL dataset, as we have simply chosen this set as a dedtrexperimental setting for the comparison of pattern
selection strategies. The query-by-example operationnsparable to nearest-neighbor classification using aesipgsi-
tive example.

Table 3. ImagEVAL training set sizes

Object class training set  class members
Armored vehicle AV 87 730
Car CA 103 1651
Cow (6{0)] 63 300
Eiffel tower ET 38 150
Minaret and mosque MM 82 650
Plane PL 81 1700
Road signs RS 31 254
Sunglasses SuU 40 1544
Tree TR 114 2717
US flag us 54 342

3.2.1 Low-level features

We extract very simple local features from the ImagEVAL iraag— color histograms weighted by the local activity of
the color in a small neighborhood of each piX&These texture-weighted color histograms represent cczabiolor and
structure information. We use 64 bins to encode them and théistance to compare them. We do not claim that these
features are especially well-suited for object detectim they suffice for the comparison of the different représtons

we study in this paper. They can easily be replaced by otlperstpf features within the general framework we propose.

3.2.2 Quantizing features

Unlike the Reuters dataset, where due to the nature of texpditterns are already discrete, with the image data sets we
instead make use of continuous local features. Each imagerissented by an orderless bag of such patterns.

o= {Pf 01", €5} (11)

We must therefore first quantize the patterns in order toterear vocabulary. Many algorithms may be used for this
purpose. For our experiments, we have chosen the qualigttotd clustering (QT) algorithrH:

1. A maximum cluster diametd®r is supplied as a parameter for the clustering.
For each point in the dataset, a tentative cluster is oot with a range query of diametgg)r.
The tentative cluster containing the greatest numbeoiitp is selected for the clustering.

All points of the selected cluster are removed from thaskett

o M W N

The algorithm reiterates from Step 2 until the datasetriptg.

The main advantages of QT are that it achieves good covefdhe onderlying visual space in a deterministic fashion,
producing the same clustering each time it is run. Each paisequantized by a word that is guaranteed to lie within a
range ofRgr. QT is also easy to implement. The main disadvantage of Q§ fuiadratic computational cost. However,
we are not concerned with this cost, as quantization is refdbus of our study. Once QT has been used to generate a
vocabulary, we may quantize our images by assigning to itlimest words to each of its pattern, as follows:

Dy = {W},j € [L, 5] VWi, d(WF, PF) < d(W;, PF)} (12)

The number of clusters produced by QT, and thus the sizesofdbabularies generated, depend on the choice of cluster
diameter parametei . Some vocabulary sizes obtained for different valueRgi- are shown in Table 8.



4. PATTERN SELECTION STRATEGIES

We study two pattern selection strategies: dense samptidgaint-of-interest detection. We will explain the paraemne
value choices and other design choices for both degradédnebimage data.

4.1 Dense sampling

For image data, as dense sampling would be too computdiicegiensive, we restrict the sampling to locations on a
uniform grid. In this way, we guarantee that detected pastare uniformly distributed throughout the image. The suipp
regions within which features are computed are square wisdaf fixed size centered at grid locations. We conduct
different experiments with windows of sizes = 8, 16, 32 and64 pixels. The grid interval is chosen so as to produce
approximately 1000 patterns per image.

For text, we perform dense sampling by applying a slidingdeim of fixed size over degraded text documents. Tests
were conducted for windows of sizes 2, 3, 4 and 5 charactact st considering every possible placement position for
the fixed-size window. At every position, the text string eppng in the window was treated as a word, and the vocabulary
for each test consisted of the full collection of fixed-sizeress encountered over all window positions over all docurmen
in the database. The vocabulary sizes for each test areteelpior Table 4, together with the proportion of the potential
vocabulary (the size of which B6") covered by the observed vocabulary.

Table 4. Vocabulary size depending on window size
w Vocabulary Size 10 Most Frequent Words
2 1296 (100%) er, es, re, on, in, at, te, an, nt, ar
3 43,700 (93.66%) the, ing, ion, ent, and, ate, ter, for,dzst,
4
5

666,418 (39.68%) said, tion, nthe, dthe, ment, atio, dhtr, inth, rthe
4,607,713 (7.62%) ation, inthe, ofthe, saidt, llion, hjdlio, tions, tiona, idthe

4.2 Point-of-interest detection

Of the many well-known point-of-interest detectors avaléa we chose to combine the $ffdetector with a color Harris
detectort® as these detectors do not focus on the same salient vistiaésaUsing these detector algorithms, we extracted
500 Sift points and 500 Harris points per image. As for théstes the grid variant, we compute features within fixed-size
square windows centered at detected locations, with eatintelving a different choice of window size.

For the purpose of comparison, point-of-interest detaectiaist be simulated for text in a manner analogous to that
within images. For degraded text, this raises the questiovhat constitutes useful textual information, and whatiomot
might be analogous to that of high local variation of sigmalmages? Any detection strategy for degraded text would
need to be repeatable, in that the same sentence from tveoatiffdocuments should be characterized equivalentluaVis
point-of-interest detectors concentrate on patternsrigakigh local contrast, and avoid all others. We therefomppse
detectors for text that select certain types of patternsexatude others, namely those patterns matching a presdlect
subset of the vocabulary. We experimented with two strategiith the W2 dataset.

For a given subset of a text vocabulary, we defioeerageto be the proportion of patterns in the full dataset that tmatc
a word in the subset. The strategies are :

e S1: based on document frequency scores, we form five voagtsldsets by selecting the 10, 20, 30, 40 and 50
most frequent words.

e S2: based on cumulative inverse document frequency sasesiseep the minimum number of least-frequent words
achieving 10% coverage of the data set.

S1 simulates the use of a small number of common patternge 8Ri simulates the use of a very large number of rare
patterns. The choice of roughly 1000 points of interest pexge suggests a text coverage limit of 10% for S2. 1000 points
of interest corresponds to roughly 1% of the informationhivitan image, which can achieved by extracting 10% of the
information in each of the two image dimensions. We sumnadtie vocabulary statistics in Table 5.



Table 5. Vocabulary statistics for the detection strategies — W2

Strategy Vocab. Size Coverage
Initial W2 vocabulary 1296 100.00%
S1-10 10 15.37%
S1-20 20 25.09%
S1-30 30 32.48%
S1-40 40 38.87%
S1-50 50 44.44%
S2 1008 10.00%

4.3 Resultsand discussion

The results of testing on the Reuters dataset are shown laslaland 7. In both, the scores are expressed as a propdition o
the baseline MAPs obtained using the standard approachaabutaryVz. Results on the ImagEVAL corpus are provided
in Table 8, expressed as a proportion of the scores achierad tandom rankings of database images.

Table 6. Reuters W2 - points of interest strategy

Stemmed query S1-10 S1-20 S1-30 S1-40 S1-50 S2
goldman + simpson  0.0012 0.0046 0.0107 0.0179 0.0138 0.5142
coulthard 0.0343 0.0400 0.0681 0.0892 0.0954 0.1203
arbil 0.0005 0.0088 0.0180 0.0326 0.0575 0.6917
kasparov 0.0018 0.0051 0.0161 0.0263 0.0439 0.1777
wto 0.0054 0.0129 0.0163 0.0237 0.0264 0.0913
zidan 0.0014 0.0056 0.0095 0.0158 0.0207 0.5368

greenpeac + nuclear 0.0021 0.0030 0.0135 0.0161 0.0187 0D.02
Average of 7 queries 0.0067 0.0114 0.0217 0.0316 0.0395 7B6.30

Table 7. Reuters - dense sampling strategy

Stemmed query W2 W3 W4 W5
goldman + simpson  0.5469 0.9361 0.9974 1.0029
coulthard 0.1594 0.5845 0.9374 1.0635
arbil 0.7333 0.9779 1.1090 1.1288
kasparov 0.1729 0.3873 0.7832 1.1042
wto 0.1410 0.4168 0.5476 0.6402
zidan 0.5739 0.9074 1.0443 1.1417

greenpeac + nuclear 0.0701 0.4916 0.8101 1.0106
Average of 7 queries 0.3425 0.6716 0.8899 1.0131

On the text corpus using a window size of 2 (the W2 case), weddiat both point-of-interest strategies are outper-
formed by dense sampling. The results indicate that therimdtion loss associated with sparse sampling techniquds su
as point-of-interest detection should be avoided. It isresting to note that the most informative 2-character wane
the rarest ones. Indeed, the 50 words of highest frequerfdghvtogether cover 44.44% of the total information, perier
poorly (3.95%) where the 1008 words of lowest frequencyetbgr covering 10% of the documents, achieves a much
higher score (30.75%) — only slightly worse than that of desampling (34.25%).

The results for the dense sampling strategy with larger minsizes are quite interesting and rather surprising: foreso
queries, the performance of dense sampling was better épaded text than for the original set with differentiatedrds
Relative to the original vocabulary, the sliding window a&fnde sampling captures partial information. The majority o
placements of small-sized windows capture the internatsire of words; those placements that straddle word baigsla
can be regarded as capturing contextual information. Fmesglacements, true words of the same size as the window can
be captured in their entirety. Increasing the fixed windore Serves leads to an increase in the proportion of contextua
information captured. A small sliding window of size 2 iseddy able to gather very useful information. Although only
2% of the words in the original vocabulaWy are of length 2, one third of the baseline result documemnibedound using



Table 8. ImagEVAL - pattern selection strategies

w Rgr Moc. \ Avg. \ Ay CA CO ET MM PL RS SU TR us
Grid 8 0.5 1390| 412|231 780 230 4.05 405 367 136 357 416 3.00
Grid 8 0.7 469 | 491|205 800 185 390 395 735 206 581 478 2.68
Grid 8 0.8 276 | 443|269 566 172 527 360 591 149 432 520 227
Grid 8 1.0 115| 4.75| 240 6.00 1.70 4.01 399 552 127 4.60 481 1534
Pol 8 0.5 1364 3.76 | 3.18 6.15 286 3.71 221 395 240 4.06 325 6.20
Pol 8 0.7 430| 3.51| 297 435 283 420 426 364 218 385 288 474
Pol 8 0.8 260| 3.61| 281 446 3.00 658 314 437 155 3.09 320 5.02
Pol 8 1.0 115| 413 | 3.16 419 252 230 193 3.97 241 421 6.39 2.60
Grid 16 05 1525 569|190 7.68 193 475 338 858 211 409 7.16 7.02
Grid 16 0.7 432 | 529|259 563 151 344 316 701 259 354 6.79 14.69
Grid 16 0.8 262| 500|265 6.39 184 449 273 939 250 431 445 1012
Grid 16 1.0 106 | 3.88| 2.23 552 131 355 292 7.16 397 380 3.12 349
Pol 16 0.5 1283 392|327 490 3.07 492 238 400 102 229 450 7.75
Pol 16 0.7 357| 410 | 247 487 206 411 297 415 181 319 564 4.48
Pol 16 0.8 197| 411 | 262 4.18 2.03 3.72 262 425 0.88 441 584 514
Pol 16 1.0 82 | 341|262 509 257 172 283 347 084 278 4.06 1.87
Grid 32 05 1536/ 530|191 7.37 190 4.02 372 863 266 438 411 19.77
Grid 32 0.7 472 | 565|211 6.79 191 585 311 894 251 349 6.42 13.96
Grid 32 0.8 280| 5.09| 237 783 120 399 329 917 158 374 4.07 1335
Grid 32 1.0 112 | 408 | 3.04 6.92 143 297 264 8.01 221 329 285 3.20
Pol 32 05 1351 366|252 476 229 451 235 440 097 276 437 3.63
Pol 32 0.7 387| 362|181 505 191 168 3.01 366 260 255 485 3.40
Pol 32 0.8 224| 359 | 258 530 194 202 381 412 172 213 357 581
Pol 32 1.0 89 | 3.60| 224 427 172 107 378 480 128 191 458 293
Grid 64 05 1640 4.18| 2.18 6.62 174 456 349 6.72 200 260 3.60 5.71
Grid 64 0.7 491 | 458 | 216 6.42 226 2.03 4.03 860 215 270 436 4.06
Grid 64 0.8 278 3.79| 1.84 6.08 168 4.14 267 555 234 183 395 4.06
Grid 64 1.0 116 | 4.34| 270 7.07 190 4.65 507 4.02 208 265 471 3.73
Pol 64 05 1391 345|149 507 218 296 354 312 059 277 4.08 537
Pol 64 0.7 403| 340 | 2.37 463 165 259 438 315 091 250 342 7.19
Pol 64 0.8 229| 3.08 | 1.79 493 213 240 177 283 196 252 356 531
Pol 64 1.0 91 |1 291|167 531 138 341 311 276 091 289 259 345




queries based on the vocabulary W2. If we compare with thdtseshtained for the undegraded vocabul&iy(which

has the same size as W2), we notice that the average retr@galfor the degraded vocabulary W2 are twice as high. We
believe that a fixed choice of window size acts to some exteattzand-pass filter, focusing on true words of length of the
same size as the window. It is hardly surprising that the tesstits were obtained for W5, as its window size is closest to
the mean size of the true words in the baseline vocabiarysee Figure 1). Although much noise is captured when the
windows are larger (the size of W5 is approximately 12 timegdathan that of/z), noise words tend to be suppressed
by low TF-IDF weightings in vector representations. Parfance may also be boosted due to the increased contextual
information captured with the larger window sizes. Thesgepbations led us to conduct an experiment with a vocabulary
(V2) consisting of those words of the undegraded baseline waghl’s having exactly 5 characters. Except for one of
the seven queriegasparoy the results fofl, are substantially worse than thoselgf. Taken together, the experiments
lead us to conclude that finding precise word boundaries isiacessary, as densely sampled features are sufficient for
good performance.

Figure 3. ImagEVAL - points of interest generated by 3 different detsc

On the ImagEVAL dataset, even if for some classes and settitggpoint-of-interest approach is better, globally dense
sampling is more relevant and provides on average bettéorp@ance for a given number of local patterns extracted. In
some cases (such as ttmvclass), the point-of-interest strategy may strictly oufipen the grid approach, for all windows
sizes. In other cases (such as fi@neclass), we may observe the opposite. For the case df#h#élagclass, we can see
that the results are better with points of interest whengismall windows ¢ = 8), but the best overall results are reached
with the grid approach and windows of size= 32. As an example, the image of Figure 3 shows the featuresatetta
from a picture where a flag is present — SIFT features are shiowed, Harris color features are shown in green, and the
grid itself is shown in blue. We note that both SIFT and Hapaints of interest are located on stars and borders of the
flag, but points of interest were selected from the stripé® Striped regions of the flag provide useful informatiort,itsu
visual structure is not well captured by points of inter&dtis example shows the advisability of using a dense sagnplin
when little or noa priori information is available for the image database.

5. CONCLUSIONS AND FUTURE WORK

We introduced an original generalized framework to evaudifferent representations and pattern selection stegdgr
documents. We proposed that techniques from the image ddreaipplied to a degraded version of the text documents for
the purpose of assessing their effectiveness, since grtoutihdnformation is generally easier and cheaper to olftaitext

than it is for images. To facilitate the comparison, we alesighed a point-of-interest detection strategy for unseged
text. We have evaluated two local patterns selection sfiegeised with bag-of-words representation. We have shbatn t
on a text corpus and on an image corpus, the behaviour of dansgeling and point-of-interest sampling is similar and, in
both cases, the results are generally better with denselisgmp

We believe that dense pattern sampling should be used ineimggesentation as it leads to less information loss
in comparison with point-of-interest detection. In praetiwhen extracting a number of patterns from an image, dense



pattern sampling allows for lower computational costs duthé relative ease of using a grid to determine their looatio
Moreover, we've seen that knowledge of the exact word bortieslén the text corpus is not necessary for achieving good
results. The experiments for text suggest that internaalgtructure and external contextual information may bpfake
when annotating images, which supports our argument irr fafvdense sampling of the visual content.

In future work, we plan to extend the representation and §amptrategies introduced in this paper to a full annotatio
framework, with several types of low-level features, madtle combination of different window sizes in the sameeaepr
sentation, and the inclusion of knowledge gained from vataal creation and learning models. We also plan to evaluate
other representations for images and test them first on dedrtext corpuses. This evaluation framework could also be
applied to other forms of multimedia (such as sound and yided their associated patterns.

ACKNOWLEDGMENTS

The work presented in this paper was partially supportedibyEuropean Commission under contract FP6-045389 Vitalas.
All pictures are copyrighted by Bassignac-Gamma, exceptttip center photo in Figure 2, which is copyrighted by
Keystone.

REFERENCES

[1] Hervé, N. and Boujemaa, N., “Image annotation : which approachefalistic databases ?,” iI\CM International
Conference on Image and Video Retrieval (CIVR]0@uly 2007).
[2] Barnard, K., Duygulu, P., Forsyth, D., de Freitas, NeiBD. M., and Jordan, M. I., “Matching words and pictures,”
Journal of Machine Learning Resear8h1107-1135 (2003).
[3] Dance, C., Willamowski, J., Fan, L., Bray, C., and Csuyra, “Visual categorization with bags of keypoints,” in
[ECCYV International Workshop on Statistical Learning in Quarer Visior, (2004).
[4] zZhang, J., Marszalek, M., Lazebnik, S., and Schmid, Cocal features and kernels for classifcation of texture and
object categories: An in-depth study,” Tech. Rep. RR-5TSRIA Rhdne-Alpes (2005).
[5] Amores, J., Sebe, N., and Radeva, P., “Efficient objéasscrecognition by boosting contextual information,” in
[IbPRIA], (2005).
[6] Salton, G., The SMART Retrieval System—Experiments in Automatic Dadurrocessing Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA (1971).
[7] Lewis, D. D, Yang, Y., Rose, T., and Li, F,, “Rcvl: A newrmmark collection for text categorization research,”
Journal of Machine Learning Researgh361-397 (2004).
[8] Porter, M., “An algorithm for suffix stripping,Program14(3), 130-137 (1980).
[9] Picault, C., “Constitution of the imageval databaseerd-user oriented approach,” tech. rep., Paragraphe atdrgy
Universié Paris 8 (2006).
[10] Vertan, C. and Boujemaa, N., “Upgrading color disttibas for image retrieval: can we do better ?,” international
Conference on Visual Information Systgn{2000).
[11] Heyer, L. J., Kruglyak, S., and Yooseph, S., “Explorexpression data: Identification and analysis of coexptesse
genes,’'Genome Researd) 1106-1115 (1999).
[12] Lowe, D. G., “Object recognition from local scale-imant features,” in [nternational Conference on Computer
Vision], (1999).
[13] Gouet, V. and Boujemaa, N., “Object-based queries qusinlor points of interest,” in IEEE Workshop
CBAIVL/CVPR, (2001).



