STATISTICAL COLOR TEXTURE DESCRIPTORS FOR HISTOLOGICAL IMAGES ANALYSIS

Nicolas Hervé^a, Aude Servais^b, Eric Thervet^b, Jean-Christophe Olivo-Marin^a and Vannary Meas-Yedid^a

(a) Institut Pasteur, Quantitative Image Analysis Unit, URA CNRS 2582, 75015 Paris, France - www.bioimageanalysis.org (b) Departments of Nephrology and Renal Transplantation, Necker Hospital, 75015 Paris, France

CONTEXT

Texture and color low-level features are an important part of microscopy image analysis

- the quality of low-level features is essential for all image analysis processes
- how should we combine color and statistical texture informations ?
- particular case of histological datasets : color plays a specific role due to the staining process
- two main approaches : joint or separate assessment

- gray scale image **G** of $w \times h$ pixels
- the neighbourhood of a given pixel (x, y) is defined by a number P of equally spaced pixels on a circle of radius R.
- $N_p(x,y) = \left(x + Rcos(\frac{2\pi p}{P}), y Rsin(\frac{2\pi p}{P})\right), p \in [0, P-1]$
- intensities of neighbour pixels $\mathbf{G}(N_p(x, y))$ are obtained by bilinear interpolation

 $f_{\alpha}(z)$

$$LBP_{P,R}(\mathbf{G}, x, y) = \sum_{p=0}^{P-1} s \left(\mathbf{G}(x, y) - \mathbf{G}(N_p(x, y))\right) 2^p$$

$$H(\mathbf{G}, i) = \sum_{x, y} \delta(i, LBP_{P,R}(\mathbf{G}, x, y)), i \in [0, 2^P - 1]$$

$$\mathbf{Fuzzy/Soft version}$$
Improved version : soft thresholding approach for the intensity differences
$$f_{\alpha}(z) = \begin{cases} 0, & z < -\alpha \\ \frac{1+\frac{z}{\alpha}}{2}, & |z| \leq \alpha \end{cases}$$

• extend the rotation invariant and uniform approach to the soft LBP version via a look-up table : better texture representation, lower dimensionality

$$H_{\alpha,riu}(\mathbf{G},i) = \sum_{x,y,j} SLBP(\mathbf{G},x,y,\alpha,j), j \in LUT(i)$$

• apply SLBP on color quantization membership images

• we have a set $\mathbf{Q}_n = \{q_b\}$ of *n* representative colors and we define *n* membership images

$$\mathbf{M}^{b}(\mathbf{C}, x, y) = \frac{1}{d(\mathbf{C}(x, y), q_{b}) \sum_{k=1}^{n} \frac{1}{d(\mathbf{C}(x, y), q_{k})}}$$
$$SQCLBP_{\alpha}(\mathbf{C}, i) = \bigoplus_{i=1}^{n} H_{\alpha, riu}(\mathbf{M}^{b}(\mathbf{C}), i)$$

b =

Other tested approaches

- Gabor wavelet features : normalized mean and standard deviation of the magnitude
- Haralick contrast measure on co-occurence matrices for quantized images

EVALUATION

Datasets

- three diversified histological datasets
- different organ tissues, purposes, staining, imaging, variability
- available publicly
- classification task

				21.011.11
	Random	0.503	0.572	0.341
	$I1H2H3_3$	0.850	0.736	0.546
	$I1H2H3_5$	0.886	0.820	0.578
	$I1H2H3_{10}$	0.911	0.784	0.594
lor	SM_8	0.899	0.757	0.532
ں ت	SM_{16}	0.904	0.791	0.577
	SM_{20}	0.917	0.777	0.580
	SM_{32}	0.913	0.776	0.590
	SM_{64}	0.909	0.775	0.604
ø	Gabor	0.863	0.922	0.517
tur	LBP	0.705	0.945	0.529
lex	LBP_{riu}	0.723	0.922	0.506
	SLBP	0.919	0.949	0.535
	$SLBP_{riu}$	0.922	0.954	0.540
cp.	$I1H2H3 \oplus SLBP_{riu}$	0.946	0.875	0.617
Š	$SM \oplus SLBP_{riu}$	0.952	0.842	0.631
	Gabor, I1H2H3	0.894	0.962	0.583
oir	$SLBP_{riu}, I1H2H3$	0.974	0.973	0.576
	SQCLBP	0.937	0.954	0.632
	CCOM	0.933	0.825	0.633

Conclusions

- SLBPriu is the best texture feature on grayscale images
- limited variability of the dataset (GLOMDB, LG6MAL) : extract color and texture features jointly
- high variability (LYMPH) : extract color and

	Glomerulus	Not glomerulus
LG6MAL		
	Female	Male
LYMPH		
	CLL	FL MCL

• soft margin SVM with triangular kernel

• only a few training examples

• Mean Average Precision measure (MAP)

• I1H2H3 color space : $I1 = \frac{R+G+B}{3}$, H2 = R - G and $H3 = \frac{R+G}{2} - B$.

texture features separately and concatenate

Toy plugin available for TextureSegmentation V1.0.0 the ICY image analysis software P 4 R 1.0 T 25.0 • free and open source • SLBPriu implementation ⊙ triangular ○ linear ○ rbf C 1.0 gamma 1.0 • semi-supervised texture segmentation plugin Log Texture SVM

C TextureSegmentation V1.0.0

urrent image :

Texture

SVM

SLBPriu descriptor

Color W 3

ICY