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ABSTRACT

In this paper we compare different approaches to combine color and
statistical texture descriptors. Previous studies on this topic were
conducted on natural images only. We focus on the particular case
of histological datasets where color plays an important role due to
the staining process of the biological samples. We also introduce
two new variants of the well-known Local Binary Patterns (LBP )
operator. We test these approaches on three diversified histological
datasets. We show that combining color and texture features ex-
tracted separately is preferable on datasets having a large variability
in the staining, while simultaneous extraction of color and texture
information is recommended only for more standardized stainings.

Index Terms— Color texture, LBP, Co-occurrence matrix,
stained tissue, classification, histology

1. INTRODUCTION

In the field of computer aided diagnosis based on microscopy image
assessment, an objective quantitative approach is required in order to
increase reproducibility and predictive accuracy. In a biopsy image,
biologically different parts of the tissue are characterized by a spa-
tial organization of its cellular and connective tissues components
that give raise to the tissue texture. Color is also of great importance
for analyzing histology images. Indeed, the samples are usually pre-
pared with some chemical solution that will enhance the contrast
and stain in very distinctive colors specific parts of the cells or tissue
that have been sampled. Common staining processes include H&E
(hematoxylin and eosin) or Masson’s trichrome. Although there ex-
ists many works applied to histological images in texture [1, 2, 3]
or color analysis [4], only a few of them concerns both texture and
color [5, 6]. Whatever the final application, the quality of low-level
features extractors is essential for all image analysis processes.

In [7], the authors discuss pros and cons of using color and
texture description jointly or separately for natural images. They
conclude that using color version of texture descriptors should only
be used in controlled environment regarding illumination condi-
tions. Otherwise, extracting feature vectors separately (e.g. color
histograms and texture histograms) and concatenating them works
better. In [8], Palm has grouped the methods combining color and
texture into three approaches: parallel, sequential and integrative,
and claims that the integrative approach provides the best perfor-
mances unlike the conclusions in [7].

The objective of this paper is to compare different combinations
of color and texture features for the particular case of histological
images in order to assess the best approach in this domain. We focus
on statistical texture features as they provide very good results and

also introduce two new variants for the LBP operator. We test these
approaches on three different datasets. For comparison purposes,
performances obtained with Gabor features are also reported.

2. APPROACHES

2.1. Local Binary Patterns

The Local Binary Patterns operator (LBP ) [9] is now a standard
method for analyzing textures. We consider a gray scale image G
of w × h pixels. The basic idea is to describe locally the texture
at a given pixel (x, y) by thresholding its neighbourhood by its in-
tensity value G(x, y) and produce an index. Usually, the neigh-
bourhood is defined by a number P of equally spaced pixels on a
circle of radius R. Each neighbour pixel is defined by Np(x, y) =(
x+Rcos( 2πp

P
), y −Rsin( 2πp

P
)
)
, p ∈ [0, P − 1]. Intensities of

neighbour pixels G(Np(x, y)) are obtained by bilinear interpola-
tion. Some other neighbourhood have also been introduced [3]. The
LBP index is then defined as

LBPP,R(G, x, y) =

P−1∑
p=0

s (G(x, y)−G(Np(x, y))) 2
p

with the standard function s for thresholding (equal to one if the
argument is positive, zero otherwise). By accumulating LBP indexes
in an histogram we obtain, for any given region of interest, a vector
of size 2P that is used as a feature. Each bin of this histogram is
defined by

H(G, i) =
∑
x,y

δ(i, LBPP,R(G, x, y)), i ∈ [0, 2P − 1]

where δ is the Kronecker delta.
Several extensions have been proposed [9, 10] in order to im-

prove the initial approach : rotation invariance, uniformity, contrast
taken into account, multi-resolution, opponent colors, fuzzification,
ternary patterns. Rotation invariance is achieved by reducing the
number of possible LBP indexes, regrouping together similar local
pattern that only differ by a rotation. In the same way, uniformity
only considers simple local structures. More complex structures are
accumulated in an extra bin of the histogram. Considered simul-
teanously, these two improvements lead to the LBRriuP,R variant that
can produce P + 1 distinct indexes.

A straightforward approach to extend texture descriptors to color
images is to extract them separately on the three color channels,
each one of them being considered as a grayscale image, and then
combine the features obtained by concatenation. This is the single
channel integrative approach described in [8] where cross-channels



is also considered (multiple channel integrative approach). For ex-
ample, with C aRGB color image, we concatenante the three chan-
nelwise histograms :

HRGB(C, i) = H(CR, i)⊕H(CG, i)⊕H(CB , i)

In [10], soft histograms ofLBP are introduced. Instead of hard-
thresholding the intensity difference of the center pixel and its local
neighborhood with s, a fuzzy function f is applied in order to smooth
the LBP operator response.

fα(z) =


0, z < −α
1+ z

α
2
, |z| ≤ α

1, z > α

The amount of fuzzification is controled by adjusting the pa-
rameter α. The contribution of a given pixel (x, y) to bin i of the
histogram is then

SLBP (G, x, y, α, i) =

P−1∏
p=0

[(2bp(i)− 1)fα(G(x, y)−G(Np(x, y))) + 1− bp(i)]

with bp(i) ∈ {0, 1} being the p-th bit of binary representation of i.
The fuzzy histogram is then defined as

Hα(G, i) =
∑
x,y

SLBP (G, x, y, α, i), i ∈ [0, 2P − 1]

2.2. Proposed LBP variants

We propose to extend the rotation invariant and uniform approach
to the soft LBP version. Indeed, the equations of ROR and U de-
tailled in [9] cannot be applied directly on the SLBP as they are
now real values and not integers anymore. Nevertheless, they can
efficiently be used for the histogram computation by using a look-up
table LUT and marginalizing the accumulation of SLBP in bins
according to the rotation invariant and uniform version of the corre-
sponding LBP index.

Hα,riu(G, i) =
∑
x,y,j

SLBP (G, x, y, α, j), j ∈ LUT (i)

We have already shown in [11] that color quantization is an ef-
fective approach when segmenting some specific structures in histo-
logical images due to the staining process. A natural extension to
such image analysis is thus to consider texture features on quantized
colors. The objective we have in mind is to highlight some tissue
structures that will be first isolated by some quantized colors before
being described by texture features. Any quantization algorithm tries
to find a set Qn = {qb} of n representative colors that minimizes
the global error between the original image and its quantized version
where each pixel color is replaced by the closest one in Qn accord-
ing to the distance function d. The value of n is either a parameter
of the algorithm or is determined automatically during the quantiza-
tion process. A membership function M may indicate the degree of
similarity of the pixel color and its associated qb. When a fuzzy clus-
tering process is used (e.g. FCM), this membership function is part
of the algorithm. Otherwise, as with KMeans or Split and Merge
approaches, it may be computed afterwards. For example, we can
define for each representative color b ∈ [1, n] an image Mb(C) of
memberships

Mb(C, x, y) =
1

d(C(x, y), qb)
∑n
k=1

1
d(C(x,y),qk)

If a pixel color is the same as a representative color, d(C(x, y), qb) =
0, then the membership is 1 for the color b and 0 for all the other
ones.

We propose to merge color and texture information extraction by
applying fuzzy LBP on the membership images. This is a sequen-
tial approach as described in [8]. The Softly Quantized Color Local
Binary Pattern, that provides our global feature vector, is therefore
defined as the concatenation :

SQCLBPα(C, i) =

n⊕
b=1

Hα,riu(M
b(C), i)

2.3. Co-occurence matrices

Co-occurence matrices are also often used to extract texture infor-
mations [12]. Following our previous notations, we can define, for a
quantized color image CQn , the co-occurence matrix COM . This
is also a sequential approach. For a given spatial relationship, the
co-occurence of two quantized colors (a and b) is mesured by a cell
of this matrix. Here, we use the neighbourhood as defined by the
LBP operator. We thus have :

COMP,R(CQn , a, b) =

1

w × h

w∑
x=1

h∑
y=1

P−1∑
p=0

δ (a,CQn(x, y))× δ (b,CQn(Np(x, y)))

This matrix can be used directly as a descriptor or to extract fea-
tures, known as Haralick features. We choose to use the generalized
contrast feature to marginalize the co-occurence matrix. Note that
the distance we use in the contrast measure is computed in the color
space. The result is a n-dimensional feature vector :

CCOMP,R(CQn , a) =

n∑
b=1

COMP,R(CQn , a, b)× d(qa, qb)

3. EXPERIMENTAL RESULTS

3.1. Datasets

We have tested the different color and texture descriptors individ-
ually and in combination on three histological datasets. Two of
them come from a publicly available benchmark suite [13]. The last
dataset has been assembled internally and is also provided publicly
to foster comparison of different approaches1.

We used the Liver Gender dataset for 6-month old mices under
ad libitum diet (LG6MAL). The goal is to distinguish the samples
extracted from male and female mices. These samples are stained
using H&E. A single person has prepared all the staining and imag-
ing, leading to a small variability. We reduced the original image
dimensions by a factor 4 (leading to 347 × 260 pixels). As the ac-
quisition was done using 12 bits per color channel, we also streched
the histograms so as to fully cover the 16 bits encoding. This set has
265 images.

The Lymphoma dataset (LYMPH) contains three types of ma-
lignant lymphoma (chronic lymphocytic leukemia, follicular lym-
phoma and mantle cell lymphoma). The goal is to distinguish these
three classes (CLL, FL and MCL). The biopsies have been prepared
by different pathologists at different sites. Thus, we face a huge vari-
ability in the staining and imaging quality. The samples are stained
using H&E. As with the previous datased, we reduced the image
dimensions by a factor 4. This set has 374 images.

1GlomDB : http://www.bioimageanalysis.org/glomdb.html



Fig. 1. (L) Male liver - (R) FL type lymphoma

The GLOMDB dataset has been specifically designed by us to
test color and texture descriptors. We are interested in quantifying
interstitial fibrosis on renal biopsies [11], and need to assess the per-
formance of joint color and texture information. In order to finely
segment the images, we need to properly detect the glomeruli struc-
tures of the kidney. We used 15 different biopsies, stained using
Masson’s trichrome, that were collected and processed by different
operators at different times in the same hospital. All the imaging
was done using the same microscope (Zeiss Mirax Scan, 20X ob-
jective, NA 0.8) under identical illumination context. We manually
segmented all the glomeruli and then automatically extracted 16×16
pixels non-overlapping square patches. This set has 1976 images of
texture, half of which are glomeruli.

Fig. 2. Part of a renal biopsie with a glomerulus on the left

3.2. Experimental setup

On all three datasets, we used soft margin support vector machines
(SVM) as classifiers with a triangular kernel. It has the great advan-
tage of being non-parametric while able to adapt to any scale in the
feature space. We choose the simple approach that assimilates the
score of the SVM decision function in a confidence level, following
the intuitive idea that being far from the decision boundary is equiv-
alent to being less ambiguous for a concept. This setup has proven
to perform well with statistical visual descriptors [14].

We use the Mean Average Precision measure (MAP) to evaluate
the performances as it encompasses both precision and recall in a
single figure. Datasets are randomly split in a training and a testing
set. We choose to have only a few training examples so as to simulate
the difficult conditions we usually face. For LG6MAL and LYMPH,
5% of the images are used in the training set. We keep only 1% for
the GLOMDB dataset. Once the SVM has been trained, we rank the
full testing set according to the score provided by the classifier and

Desc. GLOMDB LG6MAL LYMPH
Random 0.503 0.572 0.341

C
ol

or

I1H2H33 0.850 0.736 0.546
I1H2H35 0.886 0.820 0.578
I1H2H310 0.911 0.784 0.594
SM8 0.899 0.757 0.532
SM16 0.904 0.791 0.577
SM20 0.917 0.777 0.580
SM32 0.913 0.776 0.590
SM64 0.909 0.775 0.604

Te
xt

ur
e Gabor 0.863 0.922 0.517

LBP 0.705 0.945 0.529
LBPriu 0.723 0.922 0.506
SLBP 0.919 0.949 0.535
SLBPriu 0.922 0.954 0.540

Se
p. I1H2H3⊕ SLBPriu 0.946 0.875 0.617

SM ⊕ SLBPriu 0.952 0.842 0.631

Jo
in

. Gabor, I1H2H3 0.894 0.962 0.583
SLBPriu, I1H2H3 0.974 0.973 0.576
SQCLBP 0.937 0.954 0.632
CCOM 0.933 0.825 0.633

compute the average precision. We choose a one-against-all config-
uration. For LG6MAL, we test the male class. For GLOMDB, we
test the glomerulus class. For LYMPH, we test the three classes and
average the results. All experiments are launched 5000 times, the
reported results are averaged. As some datasets are unbalanced, we
also report the MAP obtained for random ranking of the sets.

3.3. Results

We first test separately color and texture descriptors to assess the re-
spective importance of these two feature categories and to establish
baseline results. We extract color features with simple histograms.
We use two types of color space quantization. First, we use a stan-
dard fixed grid on the I1H2H3 color space that splits each axis in
n intervals, producing n3 bins. The hybrid colorspace I1H2H3 is
defined by I1 = R+G+B

3
, H2 = R − G and H3 = R+G

2
− B.

It was shown to be accurate for Masson trichrome histology slides
segmentation [11]. The results are only reported for this color space,
but we obtained very similar performances with HSV , RGB and
L∗a∗b∗ spaces. Then we use a clustering approach in order to quan-
tize finely the colors of the full datasets. As in [11], we choose a Split
and Merge algorithm (SM) and report results for different number of
clusters. We have unified the notations to define the neighbourhood
of LBP variants and co-occurence matrices. In the following, we
choose to work with 8 neighbours per pixel, thus we have P = 8
for all descriptors and datasets. The other parameters of the texture
descriptors have been set by cross-validation. The radiusR has been
determined with LBP and the same value has been used with the
other descriptors. This parameter depends on the intrinsic scale of
the tissue structures and the acquisition context (microscope objec-
tive, image resizing). We have for GLOMDB : R = 1, α = 25, for
LG6MAL : R = 4, α = 25 and for LYMPH : R = 1.5, α = 20.
We can notice that the fuzzification parameter α is almost the same
for the three datasets. We use the Gabor wavelet features described
in [15] as a reference : normalized mean and standard deviation of
the magnitude with 8 orientations and a single scale (as LBP ap-
proaches).

We have tested the two approaches described in [7] to combine



color and texture informations. We first extract each type of informa-
tion separately and concatenate the features vectors (this approach is
called parallel in [8]). For each dataset, we use the best version of
color and texture descriptor taken alone. Then, we extract color and
texture jointly. We use the best texture descriptor, SLBPriu, on
the three color channels of the I1H2H3 color space (single chan-
nel integrative method). The feature vectors are then concatenated.
The other approach is first to quantize the datasets with the Split
an Merge algorithm and extract texture information with our LBP
variant (SQCLBP ) and with the contrast version of co-occurence
matrices (CCOM ). For each dataset, we use the number of cluster
n that gives the best performances for the SM color histogram taken
alone.

4. DISCUSSION AND CONCLUSION

The three histological datasets we used are quite diversified (differ-
ent organ tissues, purposes, staining, imaging, variability). We first
analyze the results of the descriptors alone to know if one feature
category is dominant over the other one. When looking at the first
half of the results table, we can easily see that for GLOMDB, both
color and texture taken alone achieve the same performances. On
LG6MAL, texture is clearly the dominant feature, unlike LYMPH
where color alone provides better results. Moreover, using the Split
and Merge quantized histogram works better than fixed grid splitting
of the color space for GLOMDB and LYMPH. For the texture on
the grayscale images, the proposed SLBPriu approach provides the
best performances on the three datasets. When combined with color
histograms, we find the same conclusions as before (SM works better
for GLOMDB and LYMPH, and grid split for LG6MAL). More sur-
prisingly, if the performances are slightly improved for GLOMDB
and LYMPH over the descriptors taken alone, this is not the case for
LG6MAL. This is probably explained by the gap between the poor
performances of the color descriptors and the good results of the
texture on this dataset. The combination by concatenation provides
an average and the classifiers are not able to take any advantage or,
at least, keep the base performances. When color and texture are
considered jointly, the best overall performances are reached on all
three datasets. SLBPriu on the color channels performs best for
GLOMDB and LG6MAL. For LYMPH, the two approaches based
on quantized color spaces obtain the same performances as with the
previous combination approach. On all datasets, both on grayscale
and color images, the Gabor features achieve slightly worse perfor-
mances than SLBP .

If we average the performances on the three datasets, the de-
scriptors SLBPriu on I1H2H3 and SQCLBP obtain exactly the
same results (MAP 0.841). As a first conclusion, this would seem
to indicate that no method outperform the other when no a priori
information is known about the dataset. However, in the case of
histological images, we draw the same conclusions as Mäenpää and
Pietikäinen in [7]. Indeed, based on the datasets descriptions and a
manual inspection, we can say that there is no variability of the stain-
ing in LG6MAL. In GLOMDB, the variability exists but is limited
and in LYMPH it is obviously present. Using the color version of
SLBP works better than the histograms concatenation for the two
datasets that have limited variability. However considering color and
texture separately provides better performances for LYMPH, the set
that has the highest variability in images.
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