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ABSTRACT
This paper describes an efficient approach to image annota-
tion. It ranked first on the recent scene categorization track
of the ImagEVAL1 benchmark. We show how homogeneous
global image descriptors combined with a pool of Support
Vector Machines achieve very good results. We also used
this approach on several well known object recognition data-
bases to emphasize two main aspects of this research domain
: the importance of contextual information in object recog-
nition and the unsuitability of many standard databases for
this task.

Categories and Subject Descriptors
I.4.10 [Image Processing and Computer Vision]: Im-
age Representation; I.5.4 [Pattern Recognition]: Appli-
cations—Computer vision

General Terms
Experimentation, Performance

Keywords
Scene Categorization, Image annotation, Object Recogni-
tion, Global Descriptor, Support Vector Machine

1. INTRODUCTION
Automatic or semi-automatic image annotation is a very

active research field. Many professional end-users are ask-
ing for such technologies to help them in their work. They
currently have to deal with the exponential increase in the
production of new pictures while undertaking the digitiza-
tion of archived pictures. The competition between photo
agencies has reached such a level that they should not only
provide nice pictures but also very well documented ones.
Observing archivists at work is a very enriching experience,

1http://www.imageval.org
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and it reveals the technological gap between problems that
are considered to have been virtually solved in our commu-
nity and the tools that are used in such companies. For
example, it is quite surprising to see that information such
as the orientation of the picture and black and white versus
color are still entered manually, even when EXIF metadata
are available. Although we are only in the early stages of au-
tomatic object recognition, the scene categorization problem
now has technologies that are mature enough to be imple-
mented.

Several research communities are involved in the auto-
matic images annotation problem. In addition to the com-
puter vision community, many researchers from the machine
learning or natural language processing fields have proposed
new solutions. Being at a crossroads, we face an abundance
of task definitions and corresponding evaluation strategies.
With such diversity, knowing what really works and what
doesn’t is an almost impossible task for newcomers. More-
over, and paradoxically, the availability of large-scale image
databases for research purposes is compromised by the un-
certainty of copyright ownership. This leads researchers to
work on a small number of commonly available databases.
Unfortunately, these databases have huge drawbacks : they
are quite different from real databases and, more impor-
tantly, they tend to direct the research orientations away
from the end-users real needs. Whereas their usefulness was
obvious in the early stages, we should now move toward
considering more realistic data. Benchmark campaigns such
as ImagEVAL are an attempt to unify datasets, evaluation
strategies, task definitions and end-user needs.

Scene categorization has been studied for a long time now
with, notably, the classical indoor vs. outdoor task. Nu-
merous approches have been tested, focusing either on the
low-level description of the pictures or on the learning strate-
gies involved. In the latter case, building complex learning
models has too often been presented as a way to bridge the
semantic gap. We want to emphasize the fact that using
off-the-shelf visual descriptors that are not appropriate for
a given task or that are not able to capture all the visual
information of pictures (including contextual information) is
a problem that should be addressed before considering the
use of new learning strategies. We call this ”the numerical
gap”, meaning that the information is in the pictures but it
is not extracted due to the weakness of the descriptor.

We propose to challenge our global descriptors in the scene
categorization problem. We will show how efficient descrip-
tors could perform very well using simple SVMs, in terms of
both relevance and time. This approach ranked first on the



ImagEVAL scene categorization track. Furthermore, we will
discuss the contributions this method may have on object
recognition tasks.

This paper is organized as follows. We first present the
ImagEVAL benchmark and describe in detail the scene cate-
gorization task. Then we describe our low-level descriptors,
our approach for this benchmark and our results. Finally,
we present some evaluations achieved on other datasets us-
ing the same approach, including many object recognition
databases. We then draw some conclusions on the relevance
of global descriptors for image annotation.

2. IMAGEVAL BENCHMARK
ImagEVAL is a new image retrieval benchmark initiative

that was launched in France in 2006. This campaign has
been driven by the need for shared evaluation in our com-
munity. Despite the fact that some tracks dedicated to im-
age retrieval tend to appear in well established evaluation
campaigns (TREC, CLEF, etc), the task specifications are
rarely dedicated to the image domain. They are often linked
to the main objective of the campaign, leading typically
to cross-media retrieval tasks in text evaluation campaigns.
ImagEVAL is fully focused on the image retrieval domain.
A second interesting aspect that distinguishes ImagEVAL is
that its specification and organization were established by
both a research team and professional archivists [17]. The
task definitions were discussed in order to address the real
problems that photo agencies face. The images on which the
evaluation were conducted were also professional ones. They
were selected by professionals, allowing the groundtruth to
be established in a confident way : as expected by the users,
not by the researchers [22]. We are therefore close to real-
life scenarios, with challenging image collections. Several
French teams participated in the evaluation, as well as pri-
vate companies. The benchmark campaign was also open to
European teams. ImagEVAL has five main tracks : trans-
formed images, web based image retrieval, text area detec-
tion, object recognition and attribute extraction. We will
focus on this last track, explain the method we used and
present our results.

2.1 Attribute extraction task
The purpose of this task is to allow image classification.

Two kinds of semantics are targeted : the nature of the
image (artistic representation, color photograph, black and
white photograph, colored black and white photograph) and
the context of the image (indoor/outdoor, day/night, nat-
ural/urban).

Figure 1 shows the organization of these concepts as they
are presented in the task description.

A database containing 5416 images was provided for train-
ing purposes. The typical size of these pictures was about
1000x700 pixels. A groundtruth file was also provided. The
binary partition of the photograph contexts was not as clear
as it should have been. There were photographs in the data-
base that were more related to dawn or twilight than day
or night. The same concept ambiguity also appeared for
photographs of natural and urban scenes and even for in-
door/outdoor classification. But these ambiguities reflect
the real-life cases and should be dealt with. The only con-
straint for the archivists that annotate these pictures was to
provide all the semantics to reach the leaves of the concepts
tree.

Figure 1: Semantics as presented in the task de-
scription

Semantics Nb. pictures

ART 429
BlackWhite, Indoor 498
BlackWhite, Outdoor, Day, NaturalScene 159
BlackWhite, Outdoor, Day, UrbanScene 449
BlackWhite, Outdoor, Night, UrbanScene 16
BlackWhite, Outdoor, Night, NaturalScene 0
Color, Indoor 1129
Color, Outdoor, Day, NaturalScene 946
Color, Outdoor, Day, UrbanScene 1092
Color, Outdoor, Night, NaturalScene 3
Color, Outdoor, Night, UrbanScene 368
ColoredBlackWhite 327

Table 1: Task 5 learning database

Table 1 summarizes the distribution of the pictures in
the learning database. It can be seen that these data are
hugely unbalanced, but this simply reflects the natural dis-
tribution of these semantics in real databases. Finding black
and white photographs taken in a natural environment by
night is actually quite rare. Figure 2 shows some examples
from this learning database. The final evaluation database
contains 23572 images.

For the evaluation, the queries were paths of the semantic
tree (e.g. Art or Color/Indoor). For each query, the first
5000 images should be retrieved. As an image retrieval task,
the measure used to evaluate the algorithms emphasizes re-
trieving pertinent documents earlier. The MAP (Mean Av-
erage Precision) is used. It differs from the measures used
in classification tasks. Therefore, the confidence we have in
a semantic prediction is important to rank the results. As
usual, the precision is defined as :

P =
number of relevant documents retrieved

number of documents retrieved
(1)

The Average Precision is the average of the precision after
each relevant document is retrieved. For a query Q, with r
the rank, N the number retrieved, rel() a binary function on
the relevance of a given rank, and P () precision at a given
cut-off rank, we have :

APQ =

PN
r=1(P (r)× rel(r))

number of relevant documents
(2)



Figure 2: Task 5 learning database samples

The MAP is the mean of the AP over a set of queries. It
is computed by the Treceval software v7.3.

2.2 Previous work
This task is close to what is generally presented in the

literature as scene categorization. The classical indoor vs.
outdoor problem has been studied for the past ten years.
The city vs. landscape is also a common categorization prob-
lem addressed in numerous papers. Several databases have
been used and a wide range of approaches has been explored.
Among the first attempts, Szummer [29] extracted color and
texture descriptors on rectangular regions obtained on a fix
grid over the pictures. A two-stage approach was used to
separate indoor and outdoor pictures. The first layer used
KNN classifiers, the second layer was based on a majority
vote. The tests were made on a Kodak database of 1300
pictures. Serrano [26] used a similar approach on the same
database with SVMs for both layers. He also included se-
mantic cues [27] in a bayesian network to replace the sec-
ond layer. Concepts like grass, sky or clouds are detected.
Vailaya [30] [31] worked on the global pictures. He first used
global descriptors and KNN classifiers. The method was re-
fined with the introduction of a hierarchy of binary bayesian
classifiers. Maron [16] introduced a Multiple Instance Learn-
ing strategy based on small blobs of 2x2 pixels. The Diverse
Density algorithm was used to create the model. The eval-
uation was made on the Corel database. Dugué [13] used
the Local Dominant Orientations extracted from the power
spectrum using a scale space to find man-made structures in
the pictures. Oliva introduced the Spatial Envelope [20] [21]
based on perceptual dimensions like naturalness, openness
or expansion. Some papers present approaches in the con-
text of the aceMedia European project [19] [28]. By using
multiple MPEG-7 low-level descriptors, these approaches
face the problem of fusing non-homogeneous descriptions of

the pictures. Zhang [37] studied boosting approaches com-
pared to SVM approaches on the Corel database. Recently
Cutzu [8] studied several new low-level descriptors to dis-
tinguish paintings from photographs. This is to our knowl-
edge the only work done on the subject. A comparison be-
tween these approaches is quite difficult as the databases
used are different and rarely publicly available, as are the
implementations of the algorithms. Sometimes, even the
metrics used are different (classification rates with or with-
out the learning examples kept, precision-recall curves, ROC
equal error rate, etc). Generally, the best rates reported for
the indoor/outdoor classification task are around 90%. The
processing times are almost never reported.

3. OUR APPROACH

3.1 Visual content descriptors
The quality of the low-level descriptors used in any CBIR

or automatic image annotation system is dominant over any
other component. As the image signatures are the raw ma-
terial on which all the algorithms of our domain are based to
express visual similarity or to find some semantic concept,
it is of a great importance that they can be trusted. Global
descriptors have long been used to characterize the visual
aspect of images. Designing visual descriptors for specific
databases, with a priori knowledge that can be encapsu-
lated in the descriptors definition is already a difficult task.
Finding good descriptors definition for generic databases is
challenging. Colors, textures and shapes have been identi-
fied as the main low-level aspects that can be characterized
in images. We believe that good descriptors should be faith-
ful to the image content and try to keep a low dimensionality
to avoid the ’curse of dimensionality’ problems that may oc-
cur. The speed of extraction is important. More critically,
the comparison processing time between signatures needs to
be as quick as possible. An other important point is that
we focused on designing structurally homogeneous descrip-
tors. Concretely, they are all histograms, and therefore can
be used simultaneously, with the same distance functions or
the same kernels. This possible combination of our descrip-
tors is one of the powerful points on which we will come
back later. Most of these descriptors already existed in our
IKONA CBIR engine [3]. They have already been widely
tested in visual similarity search and relevance feedback sce-
narios. We will present new results on scene categorization
and object recognition on the ImagEVAL benchmark data-
base and on some common publicly available research data-
bases.

For the color description, we used a standard HSV his-
togram (hsv, 120 bins). We also use weighted color his-
tograms [32] which make it possible combine both color and
structure information in a single representation. It is well
known that usual color histograms do not keep any spa-
tial information about the pixels. But it is also known
that pixels with the same color do not have an equal vi-
sual importance depending on their localization in the im-
age. Thus came the idea to include some local activity in-
formation, measuring local uniformity or non-uniformity, in
color histograms. Shape and color are merged by weight-
ing pixel colors with the Laplacian (lapl, 216 bins). Texture
and color are merged by weighting colors with a probability
measure (prob, 216 bins). Texture information is gathered
by a Fourier histogram [11]. After obtaining the 2D Fourier



transform of an image, two histograms are computed in the
complex plane. They represent two types of distributions of
the energy. The first histogram is computed with a disks
partition, the second uses a wedges partition. Both have an
equal importance in the final signature. We slightly adapted
this descriptor for ImagEVAL in order to have a constant ra-
dius increase rather than a constant disk surface increase for
the disk partition version (four, 64 bins). Shapes are char-
acterized with a histogram inspired by the Hough transform
[11]. For each pixel, the gradient orientation and the projec-
tion size of the pixel vector onto the tangent vector to the
local edge are used to build a 2D histogram (hou, 49 bins).

We also implemented a generic shape descriptor called
’Local Edge Orientation Histogram’ (leoh). The basic idea
for the definition of this descriptor has been driven by the
ImagEVAL scene categorization task where a distinction
should be made between natural and urban pictures. It
appears that human structures in such pictures were of im-
portance but did not necessarily take up a huge proportion
of the picture. The classical Edge Orientation Histogram
[14] could be used to detect the characteristic horizontal
and vertical structures induced by the presence of human
buildings. But if this building is too small in the picture,
its presence will be swamped by the surrounding noise. We
follow the idea expressed in [25] to extend blob histograms
to local orientations and adapted it to contours gradient
only. Local Edge Orientation Histogram has the advantage
of containing both local and global information. We quan-
tized the orientations using 8 bins. We used 4 bins for the
relative proportions. We thus have a 32 bins signature. This
descriptor has been compared to a 32 bins classical EOH on
the ImagEVAL dataset and it leads to better results (pre-
sented in section 3.3).

3.2 Learning strategy
We choose an early fusion approach with a soft-margin

Support Vector Machine as the learning algorithm. Us-
ing generic global descriptors, we have no specific idea on
which characteristic is important to discriminate each con-
cept (apart for the Local Edge Orientation Histogram where
we inject a little a priori knowledge by focusing on horizon-
tal and vertical edges). We believe that it is the responsi-
bility of the learning algorithm to find which information is
important to build a model for these concepts. As we may
have some correlation between low-level features from dif-
ferent types (color, shape and texture), we think the early
fusion approach is appropriate and the SVM is powerful
enough to select the pertinent features. Thus, by staying
away from specific solutions, both for the visual descriptors
and the learning strategy, our system remains generic and
it is able to adapt to any new content and/or concept. By
concatenating the six global descriptors described in section
3.1, we obtain a 697-bin signature per picture.

As shown in figure 3, the concept tree can also be repre-
sented as a complete partition. It can be seen as a flattening
of the tree. This raises the question of knowing which type
of SVM strategy should be chosen. We have two possibili-
ties. We can choose to learn each concept separately with
one-against-all approaches. In this case, we have one model
per concept. The second option is to consider the concepts
of the semantic tree in extension. Each leaf of the tree is
then a single concept. Both strategies have been tested and
provide similar results. This is perfectly understandable as

Figure 3: Other representation of the concepts

the SVM focuses on the boundaries between concepts in the
feature space. The only difference is that in the first case
the same boundaries will be learnt several times and appear
in different models. This will lead, globally, to heavier mod-
els (more support vectors, implying longer prediction time).
But this approach is more flexible as adding new concepts
is easier.

We have tested four kernels (see table 2). The non-parametric
kernels have the huge advantage of quickening the learning
process as the parameter optimization phase is reduced to
finding the optimal regularization factor C of our soft margin
SVM. This is done by 5-fold cross-validation on the learning
database. More information on these kernels may be found

Kernel Parametric

Laplace X k(x, y) = e−σ
P

i |xi−yi|

RBF X k(x, y) = e−σ
P

i(xi−yi)
2

Triangular k(x, y) =
P

i |xi − yi|
GHI k(x, y) =

P
i min(|xi|, |yi|)

Table 2: Tested kernels

in [2].
As all our descriptors are histograms, we guarantee, by

construction, that the sum of all the bins is equal to one for
each signature. Thus, initially, our six descriptors have the
same relative importance in the kernel computation. It is
also possible to apply some preprocesses on the full vectors
that will break this equity but may help the SVM to dis-
criminate between concepts. We have tested four different
preprocesses [2] :

• none : no preprocess

• scale : each bin is scaled between 0 and 1 for the full
learning database

• normalize : each bin is normalized according to its
standard deviation on the full learning database

• pow : each bin is raised to a given power (typically
0.25)

Once the models have been computed for each concept,
they can be used to predict the semantics on new pictures.
Obtaining only the predicted concepts is not enough. We
also need confidence levels regarding the predictions in order



to rank the results. Some research has been done on SVMs
to have probabilistic outputs [23]. This is quite convenient
as it allows a comparison between the confidence levels of
different SVMs. Despite this, we choose the simplest ap-
proach that assimilates the score of the SVM decision func-
tion in a confidence level, following the intuitive idea that
being far from the decision boundary is equivalent to being
less ambiguous for the concept. As all our models are based
on the same feature space, we found this approach appropri-
ate to compare and combine the predictions of the different
concepts. We did not deal with the problem of a learning
database that doesn’t fully cover the possible feature space,
leading to potentially biased models.

We also introduce a specific classifier that allows us to
combine the outputs of several earlier classifiers. This is
useful in order to associate a global confidence level to com-
plex concepts (eg. Color/Indoor). For each combination of
concepts, we keep the minimum of the confidence levels.

All the preprocesses, optimization, learning, prediction
and querying phases have been implemented in C++ in our
CBIR engine using a home-patched version of LibSVM [4].

3.3 Evaluation results
Six different teams participated in this task. Each team

could submit up to five different runs. The teams were al-
lowed to provide runs with additional pictures for the learn-
ing database, but none did. There was a total of 13 queries
: (1) Art; (2) ColoredBlackWhite; (3) BlackWhite / In-
door ; (4) BlackWhite / Outdoor; (5) Color / Indoor ; (6)
Color / Outdoor ; (7) BlackWhite / Outdoor / Night ; (8)
BlackWhite / Outdoor / Day / Urban ; (9) BlackWhite /
Outdoor / Day / Natural ; (10) Color / Outdoor / Day /
Urban ; (11) Color / Outdoor / Day / Natural ; (12) Color
/ Outdoor / Night / Urban , (13) Color / Outdoor / Night
/ Natural. Each team had to return the 5000 first pictures
for each query.

We submitted 5 runs, corresponding to the different op-
tions presented in the previous section.

Run Options

imedia01 old version used for the blank tests
imedia02 GHI kernel, pow 0.25 preprocess
imedia03 triangular kernel, scale preprocess
imedia04 laplace kernel, scale preprocess
imedia05 extension concepts, triangular kernel, scale

Table 3: Task 5 runs

The full results are available on the campaign web site.
We provide here the MAP of all the runs.

Run MAP Run MAP

imedia04 0.6784 etis01 0.4912
imedia03 0.6556 anonymous 0.4907
imedia05 0.6532 anonymous 0.4931
imedia02 0.6529 anonymous 0.3676
imedia01 0.5979 anonymous 0.3141
cea01 0.5771 anonymous 0.1985

Table 4: Task 5 MAP

We can notice that our first run is 0.1 point better than
the second team. Then came the three runs using non-

parametric kernels. It is interesting to see that using a para-
metric kernel, leading to a time intensive parameter tun-
ing phase, only brings a small improvement in the results.
Triangular and GHI kernels obtain the same performances.
Further tests, made after the evaluation campaign when the
groundtruth was available, also indicate that the different
preprocesses bring a small but not significative increase of
0.015 point for the MAP. As explained earlier, there is al-
most no difference between runs 3 and 5. Using the exten-
sion concepts leads to a quicker model. The total number
of support vectors is 11252 for run 3 (learning time is 372
sec, prediction time is 0.1 sec per picture), and 6595 for run
5 (learning time is 176 sec, prediction time is 0.05 sec per
picture). Run imedia01 can be forgotten as it corresponds
to hypotheses that were true for the blank tests but which
no longer hold. All the processing was done on a Pentium 4,
2.8GHz, 2 Go, Linux. The low-level features extraction time
is 6 sec per picture. We can notice in the detailed results
[17] that this approach is one of the quickest.

If we except the categories where only very few training
examples were available, the MAP is above 0.75, which rep-
resent highly satisfactory results.

Using run imedia03 as a baseline, we made some more
tests with the same options to see the individual contribu-
tions of each low-level descriptor to the global result. We
used each descriptor alone and ran the same procedure.

Q run3 hsv prob lapl four hou leoh eoh

1 .93 .60 .60 .55 .49 .58 .30 .17
2 .85 .53 .50 .52 .07 .24 .06 .02
3 .86 .69 .73 .59 .14 .26 .13 .06
4 .81 .57 .63 .46 .06 .17 .06 .06
5 .74 .49 .51 .49 .24 .35 .38 .11
6 .55 .50 .48 .45 .28 .39 .31 .21
7 .07 .02 .04 .02 .00 .00 .00 .00
8 .79 .56 .61 .41 .06 .14 .08 .08
9 .57 .10 .13 .08 .02 .05 .02 .02
10 .74 .44 .49 .48 .27 .30 .29 .12
11 .87 .54 .57 .54 .52 .58 .67 .48
12 .62 .44 .44 .37 .04 .06 .06 .02
13 .13 .02 .01 .01 .01 .01 .01 .00
MAP .66 .42 .44 .38 .17 .24 .18 .10

Table 5: AP - each descriptor alone

Table 5 shows the AP results in detail. The color de-
scriptors achieve a good overall performance alone. The
importance of color for such tasks has always been known.
Furthermore, as BlackWhite/Color distinction is at the root
of the concepts tree, this importance is increased in our con-
text. We can also notice that leoh is almost twice as good as
a simple eoh for the same signature size. As we have several
descriptors for each type of characteristic, they are partially
redundant. This overlap in the information extracted from
the pictures is useful as it allows a wider area of features to
be covered and lets the SVM select the most discriminat-
ing ones for a given concept to learn. In order to study the
contribution of each descriptor mode deeply, we now run the
same procedure removing each one of them individually. We
report in table 6 the loss in the AP measure compared to
run3 for the most relevant queries.

Actually, removing a single descriptor hardly affects the
global results. In other words, it means that SVMs are able



Q hsv prob lapl four hou leoh

1 .01 .00 .01 .05 .03 .01
2 .02 .01 .01 .08 .01 .01
3 .01 .00 .02 .00 .01 .04
4 .01 .01 .00 .01 .01 .06
5 .00 .00 .04 .00 .01 .04
6 .00 .00 .00 .00 .01 .01
8 .01 .02 .01 .01 .01 .05
9 .03 .02 .01 .05 -.01 .09
10 .01 .03 .02 .01 .01 .04
11 .00 .01 .00 .04 .02 .05
12 .01 .02 .01 .02 .02 .04
MAP .01 .01 .01 .02 .01 .04

Table 6: Loss in AP - removing each descriptor

to manage a surplus of redundant information. It can be
noticed that certain descriptors are important for certain
queries. For instance, leoh provides a huge contribution for
query 9, which distinguishes between Natural and Urban
scenes. Another interesting result is that four is important
to identify the colored black and white pictures (almost all
of them came from an old postcards archive) when combined
with the other descriptors (0.08 loss in AP) although alone
it has very poor performances on this concept (0.07 AP). It
illustrates the great complementarity of our descriptors.

Based on this information, we have tested a new combi-
nation of 3 selected descriptors (prob, four and leoh - 312
bins) that produces almost equivalent results (MAP 0.63)
with twice half as much information extracted from the pic-
tures, leading to a method that is twice as fast.

4. OTHER EVALUATION DATABASES
What information could we obtain by applying the method

described in the previous section to object recognition data-
bases ? Finding objects in pictures involves using local de-
scriptors obtained through segmented regions, points of in-
terest or dense grid portions. Whatever the method, we need
to focus on parts of the picture. But contextual information
is also rather important to detect objects. Some descriptors
try to integrate this local and global information [1]. We do
not argue that object recognition problem is solved by using
global descriptors. We do think, however, it is important to
measure the suitability of the databases used by researchers
to evaluate their methods. A global approach is a good way
to obtain baseline results that provide pieces of information
on the difficulty of the task and the database. In [24] these
problems are also described and solutions to acquire new
datasets are proposed. For the following databases, we used
the same experimental setups as described by the authors
of these studies. We used our reduced set of descriptors and
SVMs with a triangular kernel. When necessary, we used
a gray level version of the descriptors in order to make a
comparison with the other methods possible.

4.1 Corel2000
The Corel dataset is probably the most widely-used in im-

age retrieval and categorization. As early as 2002, papers
explained the simplicity of this database [18] [33]. Some
experiments use 2000 pictures from this Corel collection, di-
vided into 20 categories. The database is randomly split into
learning and testing sets, with 50 pictures per category. The

operation is done 5 times, and the good categorization ratio
is measured. The results clearly confirm that this database

Algorithm Result

Our approach - 5 desc. 83.7
Our approach - HSV only 71.6
Chen - MILES [5] 68.7
Chen - DD-SVM [6] 67.5
Csurka [7] 52.3

Table 7: Results on Corel2000

is too simple. Even with a single HSV color histogram, the
results are better than tested local approaches.

4.2 ImagEVAL object recognition task
The fourth task of the ImagEVAL benchmark was ded-

icated to object recognition. Ten classes of objects were
proposed (armored vehicle, car, cow, Eiffel tower, minaret
and mosque, plane, road signs, sunglasses, tree and US flag).
The final database contains 14000 pictures, either color or
gray level. Some contain objects from different classes, and
5000 contain no object. The learning database is composed
of crops of these objects. This database is one of the most
challenging available. The objects are in very different poses,
contexts and sizes. As an example, one can see in figure 4
some pictures containing a US flag.

Figure 4: Task 4 - American flag

Unfortunately, only three teams participated in this task
(due to the high complexity of this real life database ?). The
results are quite bad and reflect the improvements that need
to be made in the local approaches for object recognition,
especially for realistic pictures. We tried our global method
on run imedia01, learning on the crops and predicting on
the global pictures. The MAP obtained is not far from our
best run. A detailed review of the results indicates that
the global approach obtains good results on the plane and
tree categories, which is quite coherent because both object
classes involve a somewhat specific context that is captured



Run MAP Run MAP

imedia05 0.2242 imedia03 0.1545
imedia04 0.2111 anonymous 0.1506
etis01 0.1974 cea01 0.1493
imedia01 0.1777 anonymous 0.14
imedia02 0.1733

Table 8: Task 4 MAP

globally. The context is an important information element
for some object categories.

4.3 Caltech4
This database contains four object classes. For each of

them, background pictures are also available. The purpose
is to separate pictures containing the object from the back-
ground pictures. It is a classification task object vs. back-
ground. We used the same training and testing sets as in
[12]. We used the gray level descriptors : lapl, prob, four
and leoh for a total of 84 dimensions. We obtained equiv-

Algorithm Plane Car Face Motorbike

Our approach 99.2 100 98.6 98.8
Chen [5] 98.0 94.5 99.5 96.7
Zhang J. [36] 98.8 98.3 100 98.5
Willamowski [34] 97.1 98.6 99.3 98.0
Fergus [12] 90.2 90.3 96.4 92.5

Table 9: Results on Caltech4

alent results with our global approach. Classification rates
that reach almost 100% with a global approach tend to prove
that this database is clearly not difficult enough for object
recognition algorithms.

4.4 Xerox7
This database contains 1776 pictures from 7 classes. As in

[34], we used a multi-class classification on a 10-fold cross-
validation. The average accuracy is reported. We used the
gray level descriptors. Our results are really close to the

Algorithm Result

Our approach 92.5
Zhang J. [36] 94.3
Willamowski [34] 82.0

Table 10: Results on Xerox7

best ones published. As for the previous one, this database
is not well-suited to this task.

4.5 Pascal VOC2005
We can find the complete description of this challenge and

the two datasets in [9]. The first dataset is said to be quite
easy while the second one is challenging. The Equal Error
Rate on the ROC curve is used to compare methods. We
only report the best published results within all.

VOC2005-1 is too simple, but when we move to a more
difficult dataset, containing pictures collected with Google,
the local approaches have a signifiant contribution.

Algorithm Bike Car Motorbike People

Our approach 88.7 92.2 95.8 86.9
Best score in [9] 93.0 96.1 97.7 91.7

Table 11: Results on VOC2005-1

Algorithm Bike Car Motorbike People

Our approach 57.9 66.3 64.8 69.2
Zhang J. [36] 68.1 74.1 79.7 75.3

Table 12: Results on VOC2005-2

4.6 Caltech101
A 101 object classes database, plus one background class

that is generally not used [10]. The objects are always cen-
tered in the pictures. There are between 31 and 800 images
per category, with huge drawbacks on some of them : two
face classes, artificial 45 rotation of some classes, etc. We
found two main experimentation protocols, with 15 or 30
images per class for the training database.

Algorithm 30 im./class 15 im./class

Our approach 39.6 32.7
Zhang H. [35] 66.23 59.08
Lazebnick [15] 64.6 56.4

Table 13: Results on Caltech101

5. CONCLUSIONS
We obtained good results on a scene categorization task

with our approach involving global descriptors and pools of
SVMs. We believe that the techniques used in this context
are now mature enough to be implemented in real appli-
cations and could help end-users. For the object recogni-
tion task, databases such as Corel, Caltech4, Xerox7 and
VOC2005-1 should now clearly be abandoned for testing
local approaches as simple global methods achieve equiv-
alent accuracy. This implies that these databases are not
problematic ones. Caltech101 is a particular case. The use
of local approaches is needed and their benefits have been
clearly demonstrated. But the pictures are far from what
may be found in real digital libraries. Actually, we doubt
whether the same problem is being addressed in this data-
base and in real cases. We believe that the use of realistic
databases such as ImagEVAL-4 should now be standard.
We will face very challenging problems that meet end-users
scenarios. Processing time is also an important criteria that
should be considered as professional databases commonly
have millions of photographs and scalability problems will
be a key issue. The importance of contextual visual infor-
mation has also been shown for this type of database.
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