Amalia.js : an Open-Source Metadata Driven
HTML5 Multimedia Player

Nicolas Hervé, Pierre Letessier, Mathieu Derval, Hakim Nabi
Institut National de I'’Audiovisuel - INA
Bry-sur-Marne, France
nherve@ina.fr

ABSTRACT

Amalia.js is a new extensible and versatile HTML5 multi-
media player that allows you to view any type of metadata
synchronized with your video or audio streams. It manages
metadata that are localized both temporally and spatially.
They can also be hierarchical. Several visualization plug-
ins have already been developped, enabling amalia.js to be
deployed in a huge variety of web applications. We believe
it can be used in various research areas to quickly visual-
ize analysis results and to share them with the community.
Amalia.js is an open-source software under a GPL license. It
is available for download at http://ina-foss.github.io/
amalia. js.

Categories and Subject Descriptors

H.5.4 [Information Interfaces and Presentation]: Hy-
pertext/Hypermedia; 1.3.8 [Computer Graphics|: Appli-
cations

General Terms

Algorithms, Design, Documentation

Keywords

multimedia, player, metadata, plugin, html5

1. INTRODUCTION

The INA Research Department is working on several mul-

timedia document analysis topics : audio segmentation, speaker

diarization and recognition, visual segmentation, visual ob-
ject detection, text/audio synchronization, ... As part of
our Research Area !, several of our prototypes have to be
developped as web applications so as to be easily accessible.
Among these prototypes, most of them are used to ana-
lyze video streams and enhance their metadata. However,

"http://research.ina.fr

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

MM'’15, October 26-30, 2015, Brisbane, Australia.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3459-4/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2733373.2807406 .

709

the analysis being at different levels (keyframes, video seg-
ments, audio channels, associated synopses, one video alone
or relative to a corpus, ...) results are obtained in very
different natures, often needing quite specific approaches to
be presented to the end user. It is also common that a user
interaction is required as part of research on the navigation
aid or data mining in large multimedia data sets. Finally,
it is sometimes useful to engage the user by asking him to
confirm the results of automatic algorithms or to annotate
the media and thus create groundtruth. Despite the dispar-
ity in research fields and resulting interfaces, working on a
common object, a video, allows us to set a generic frame-
work in which we hope to insert all of our work. The objec-
tive is to develop a universal media player, extensible and
accessible through a web browser allowing on one hand to
present all the results of video and audio analysis algorithms
and also to be a solid foundation for applications of man-
ual or semi-automatic annotation. The main characteristics
expected of such a player are: ergonomics, ease of technical
integration, genericity of the manipulated metadata and the
use cases addressed, scalability, related tools and technical
robustness.

After studying the various existing solutions, we concluded
that it was better to develop our own software to meet all of
our needs. Furthermore, we believe that this kind of tool can
be useful to others. This is the case in all the areas of im-
age analysis: biology, medicine, satellite, cultural heritage,
sport ... Whatever the field of analysis, we always need to
be able to quickly and easily view the results of the methods
we are developing. This problem is particularly true as we
often manipulate large amount of videos. Developing visu-
alization and annotation tools is often a tedious task that
deserves to be pooled. Thus, we choose to share it as an
open-source project under a GPL license.

Amalia.js is composed of three main parts that will be
described in the following sections : the unified metadata
format, the core player and the visualization plugins.

2. PREVIOUS WORK
2.1 Metadata Format

We need a unified metadata model that will be used to
convey all the necessary informations for the visualization
plugins of our player. We already mentioned the huge diver-
sity of analysis result types that can be produced for a media
stream. Thus, the main difficulty in choosing or defining a
metadata model is to ensure it will be generic enough and
stable. Many formats already exist to represent technical

or indexing metadata on video and audio streams. Amoung
the most common one can find Dublin Core 2, MPEG-7 [3],
Cinelab data model (Advene project) [1] or the Open An-
notation Data Model 3. Work on creating such a model
is conducted for several years in our Research Department.
One can cite the work done around Feria [2] that allowed
such thinking and formalized the representation of metadata
temporally positioned on a stream. This paper also showed
why MPEG-7 is unable to fulfil all our requirements.

2.2 Web Players

The list of available HTML5 video players is growing ev-
ery day. Among the well known softwares in this category,
we can cite JWPlayer, video.js or Popcorn.js *. A good
overview is available with a comparison matrix °. However,
there are only a few players able to synchronize metadata
with the playback of the stream. Generally they are lim-
ited to the display of subtitles or clickable overlays for ads
insertion in the video. Some tools meet quite the needs we
have presented. Most of them are developed in research
labs. This is the case of the IRI player °. There are also
some tools for video annotation, like Vatic [7] and the Open
Video Annotation Project . In [5] an HTML5 player is
presented with a special attention on non-linear navigation
and user annotations. VideoJot [6] allows the user to an-
notate both spatially and temporally. These two software
seems promising but, unfortunately, they are not publicly
available.

3. AMALIA SOFTWARE ARCHITECTURE
3.1 Metadata Model

The existing formats either do not allow for an accurate
representation of temporal metadata or they are too com-
plex to implement. Indeed, we need a representation format
of the information for displaying them in the player. This
means it must be easy to parse and to be in a standard
language for HTML5 developments, typically JSON. Thus,
algorithms for analyzing multimedia streams retain, if they
need it, their own data model, which can be richer and more
complex than the one used for the player.

The main principle of amalia.js is to have a unified meta-
data model. Ensuring that all the metadata types are con-
sistent and use the same standards will facilitate their use
and enable us to design generic visualization plugins. A
typical usage of amalia.js is to have a video file with a few
metadata blocks. When instantiating the player, a binding
has to be done between the metadata blocks and the visual-
ization plugins so as to decide which metadata is displayed
and in which way. It is possible to have a single metadata
block bound with several visualization plugins, each one re-
sponsible for displaying a specific facet of the data.

A generic metadata model has thus been designed, it is
intended to represent all the metadata of a media stream.

2http://dublincore.org
3http://www.openannotation.org/spec/core
‘http://popcornjs.org
5http://htm15video.org/wiki/HTMLS_Video_Player_
Comparison
®http://www.iri.centrepompidou.fr/outils/
metadata-player-2
"http://www.openvideoannotation.org

710

It is able to describe both the audio and video of a content,
technical informations, any documentary notes and all the
results of automatic metadata extraction algorithms. Cur-
rently, this model is only able to manage metadata of a single
stream. For analysis results of a corpus, involving links be-
tween streams (clustering, mining, similarity detection ...),
a specific data model extension has to be created and is cur-
rently investigated. A full XML schema (XSD) has been
written to represent this metadata model. This schema has
much more elements than what is strictly needed to display
simple metadata with amalia.js. The current version is 0.2.5.
We use this schema to automatically generate Java classes
using Jaxb and Jackson to serialize the metadata stream in
JSON. The amalia-model project ® is the reference imple-
mentation. It comes with several helper methods through a
general factory and is also available on the Central Maven
Repository. This JSON format is currently the only sup-
ported metadata format.
The model is generic and extensible, it is able to represent
any metadata that is :
e localized temporally in the stream : at a given time-
code (tc) or during a specific time segment (tcin, tcout)
e localized spatially in a video frame : currently ellipses
and rectangles bounding boxes are available
e hierarchical : each metadata is associated to a specific
level (tclevel)
e labeled : each metadata may have a label
e scored : each metadata may have a confidence scored
e extended : each metadata can have its own additionnal
data that is not represented in this model
Each metadata block has a unique id that is used for the
binding with the visualization plugins. A metadata block
should only represent a coherent and homogeneous bunch of
data. If you need to display distinct types of data, or even
several blocks of data of the same type (e.g. the output of
different versions of the same algorithm), you should provide
them in separate blocks of metadata. One can find example
of JSON files on the web site.

3.2 The core player

There are two main difficulties identified for such a project.
First, we have to cope with the HTML5 restrictions. Al-
though major progress has been made with the latest ver-
sions of HTML, there are still some difficulties compared to
the development of desktop applications. This is particu-
larly true for the multimedia streams management (codecs
and synchronization). Unfortunately, we also still have to
deal with the web browsers diversity. This is especially true
with the emergence of mobile devices. Thus, we have to
ensure our player is working fine on a huge variety of web
browsers, including tablets and smartphones. It has to fol-
low the responsive design guidelines. Secondly, we must en-
sure that the software architecture enables the player to sup-
port the various plugins that will be developed and that it
does not put too many constraints on future developments.
Furthermore, we must guarantee the good overall perfor-
mances of the whole system.

For our player development, we could have started with
an existing software and adapt it. However, the main de-
velopment effort is on the visualization plugins management
infrastructure and the metadata synchronization. It quickly

8amalia-model project :
amalia-model

https://github.com/ina-foss/

00:00:12.00

00:01:10.99

Figure 1: Amalia.js player interface

appears more complex and time-consuming to adapt exist-
ing software rather than developing a new one from start.
Indeed the basic functionalities of a media player are now
managed by web browsers, the additional cost to manage
these features (mainly the player control bar) is minimal
compared to adapting an existing software. Amalia.js core
is mainly an event-driven framework based on a plugin ar-
chitecture. Both the internal technical components and the
visualization widgets are plugins. This way, we can easily
extend and modify the behaviour of the player or adapt it
to an evolving technical environment. The core player is re-
sponsible for the overall configuration, the media asset being
played, the plugins management (instantiation, configura-
tion), the metadata management (loading, parsing, keeping
up-to-date), the binding between metadata blocks and visu-
alization plugins and the event loop (user interaction, syn-
chronization between the plugins and the stream playback,
metadata update notification). It provides an API for the
plugins to access the metadata and to control the stream
playback. The loading and parsing of the metadata blocks
are two technical plugins. They are responsible for, respec-
tively, the transmission protocol and the data format. We
have implemented two protocols. The first, and simplest, is
loading a full list of metadata blocks from an URL. On the
server side, this URL can be a simple JSON file (such as
the demonstrations on the amalia.js web site) or a dynamic
web application using, for example, the amalia-model imple-
mentation (such as DigInPix [4]). The second protocol uses
web sockets. We can thus manage metadata streaming to
the player. This feature is particularly interesting when one
need real-time synchronization of the metadata. It is the
case, for example, with collaborative annotation of a media
stream or if we need to display the results of an automatic
analysis algorithm as they are produced. As already men-
tioned, we currently only support the JSON format of our
metadata model. But, as the parsing of these data is also
a plugin, it can easily be replaced so as to manage another
data representation. The binding between a metadata block
and a visualization plugin can be achieved in two ways. One
can either bind them statically when configuring the player
(using the metadata block id) or use the dynamic binding
that will associate metadata blocks and plugins based on the
data types.

The figure 1 shows the amalia.js player default layout.
Indeed, the control bar is a plugin which contains many

711

pO0s 01.00s 02.00s 03.00s 04.00s 05.00s 06.00s 07.00 .00s 13.00s 14.00s 15(

Ball moving up

3items.

>

°

Figure 3: The histogram visualization for the time-
line plugin

widgets. The global layout and the visual aspect of these
widgets can easily be modified so as to adapt the player to
your application visual design.

3.3 Visualization Plugins

3.3.1 Timeline

The purpose of this plugin is to represent all the timecoded
metadata on a timeline. This plugin is composed of two
parts. At the top, the time axis where you can navigate and
zoom in the timeline. Below the time axis, all the timelines
are displayed. For a given media stream, one can display as
many timelines as desired, each of which may be bound to a
different metadata block and displayed with a specific type
of line. For the moment, we have four types of lines :

e cuepoint: simple temporal points (tc field)
e segment: temporal segments (tcin and tcout fields)
e image: temporal points with images, typically keyframes
(tc and thumb fields)
e histogram: any information that is temporally dis-
tributed
The three first types of lines are used in the figure 2. The
histogram visualization is presented in figure 3 where a wave
form is displayed. One can notice that an audio stream is
played as no video playback window is displayed. Further-
more, the timeline plugin is instanciated twice and bound
each time on the same metadata block. Once with the zoom
enabled (at the top), and once with the zoom disabled.

The timeline is synchronized with the player, a progress
bar indicates the current position in the media and a click
on any object represented in the timeline will seek in the
media at the correct timecode. Optionnaly, the hierarchical
structure of the metadata can be exploited. One can asso-
ciated a level in the data hierarchy with a zoom level of the
player. This option is particularly usefull when too many
data are available and when we choose to display only the
most important ones at a first glance. The other data will
only be displayed if the user chooses to zoom in and explore
a specific part of the metadata

3.3.2 Caption and synchonized text

Textual metadata can be displayed by two specific plug-
ins: caption and synchonized text. Depending on the textual
metadata you have, it may be usefull to exploit its hierarchi-
cal structure. Typically, one may choose to have the words,
sentences and paragraphs of a text temporally localized. In
such a case, one would choose a specific tclevel for each level
of text. When binding a text metadata block with one of
the text visualization plugin, one has to choose which level
will be displayed. The caption plugin is relatively conven-
tional and simply used to represent the text over the video.
It is used to display subtitles. The synchronized text plugin
allows you to browse all the text in a specific window and
synchronize the playback with the video.

3.3.3 Overlay

This plugin is used to visualize objects detected in the
video with bounding boxes. Moreover, it is able to track
them. A track is represented by a series of spatial locations.
The exact position of the bounding box is then extrapolated
by the plugin during the playback of the video.

3.3.4 Edition

Apart from the new technical or visualization plugins, we
are currently working on the editing version of amalia.js.
This will allow us to enter or correct metadata directly
through the player. We plan to use this version in groundtruth
management applications so as to enable the creation of huge
research datasets used to train supervised algorithms or to
assess analysis methods performances. Entering information
in the player is also a feature that could be useful for any
business applications dealing with temporal annotations of
multimedia streams. The current version is shown in fig-
ure 4.

4. CONCLUSION AND FUTURE WORK

We have developped a HIT'ML5 media player with its syn-
chronized metadata visualization plugins. This software is
used in some of our research prototypes : DigIlnPix [4] and
SyncNotes 2. Tt is also used at INA for professional appli-
cations. We provide it as an open-source software in the
hope it will be usefull, especially in the multimedia analysis
community. The work is not yet finished. We are currently
developing the edition version of the plugins and improv-
ing the server side libraries so as to ease applications de-
velopment. Furthermore, new visualization plugins will be
available shortly. We encourage anyone to participate by
providing their own plugins or help us with existing ones.

http://syncnotes.ina.fr/en

712

Metadata list editor

EERTICTIRr— T

00:00:15 / 00:01:28

Figure 4: The edition application

Acknowledgments

We wish to thank the main developer of this software that,
unfortunately, can not be in the authors list for legal reasons.

S. REFERENCES

[1] O. Aubert and Y. Prié. Advene: An open-source
framework for integrating and visualising audiovisual
metadata. In Proceedings of the 15th International
Conference on Multimedia, MULTIMEDIA 07, pages
1005-1008, New York, NY, USA, 2007. ACM.

V. Brunie, J. Carrive, and L. Vinet. Ingénierie des
documents audiovisuels : le projet feria. une approche
centrée sur la description des contenus. Technique et
Science de ’Information, 2006.

S.-F. Chang, A. Puri, T. Sikora, and H. Zhang.
Introduction to the special issue on mpeg-7. IEEE
Transactions on Circuits and Systems for Video
Technology, 11(6):685-687, 2001.

P. Letessier, N. Hervé, A. Joly, H. Nabi, M. Derval, and
O. Buisson. Diginpix: visual named-entities
identification in images and videos. In ACM
International Conference on Multimedia Retrieval,
2015.

B. Meixner, B. Siegel, P. Schultes, F. Lehner, and

H. Kosch. An html5 player for interactive non-linear
video with time-based collaborative annotations. In
Proceedings of International Conference on Advances in
Mobile Computing E#38; Multimedia, MoMM ’13,
pages 490:490-490:499, New York, NY, USA, 2013.
ACM.

M. Riegler, M. Lux, V. Charvillat, A. Carlier,

R. Vliegendhart, and M. Larson. Videojot: A
multifunctional video annotation tool. In Proceedings of
International Conference on Multimedia Retrieval,
ICMR ’14, pages 534:534-534:537, New York, NY,
USA, 2014. ACM.

C. Vondrick, D. Patterson, and D. Ramanan. Efficiently
scaling up crowdsourced video annotation.
International Journal of Computer Vision, pages 1-21.
10.1007/s11263-012-0564-1.

2]

8l

(4]

5]

(6]

